• Climate Change - A Global Issue
  • Dag Hammarskjöld Library
  • Research Guides

Major Reports

  • A Global Issue
  • At the United Nations
  • Books & Journals
  • Consulting the Experts
  • Keeping up to date
  • Data & Statistics
  • AR6 - 6th IPCC Assessment Report / Intergovernmental Panel on Climate Change The main activity of the IPCC is to, at regular intervals, provide Assessment Reports of the state of knowledge on climate change. The IPCC is now in its sixth assessment cycle, in which it is producing the Sixth Assessment Report (AR6) with contributions by its three Working Groups and a Synthesis Report, three Special Reports, and a refinement to its latest Methodology Report.

Cover Art

  • Global Landscape of Climate Finance 2023 / Climate Policy Initiative Date: 2023 Provides information about which sources and financial instruments are driving investments, and how much climate finance is flowing globally. The report aims to provide an updated picture on how, where, and from whom finance is flowing toward low-carbon and climate-resilient actions globally, and to improve understanding of how public and private sources of finance interact.

research report on global warming

  • << Previous: At the United Nations
  • Next: Books & Journals >>
  • Last Updated: May 6, 2024 4:22 PM
  • URL: https://research.un.org/en/climate-change
  • Ways to Give
  • Contact an Expert
  • Explore WRI Perspectives

Filter Your Site Experience by Topic

Applying the filters below will filter all articles, data, insights and projects by the topic area you select.

  • All Topics Remove filter
  • Climate filter site by Climate
  • Cities filter site by Cities
  • Energy filter site by Energy
  • Food filter site by Food
  • Forests filter site by Forests
  • Freshwater filter site by Freshwater
  • Ocean filter site by Ocean
  • Business filter site by Business
  • Economics filter site by Economics
  • Finance filter site by Finance
  • Equity & Governance filter site by Equity & Governance

Search WRI.org

Not sure where to find something? Search all of the site's content.

A girl wearing a long sundress pedals a bicycle down a flooded road..

10 Big Findings from the 2023 IPCC Report on Climate Change

  • climate change
  • Climate Resilience
  • climate science
  • climatewatch-pinned

March 20 marked the release of the final installment of the Intergovernmental Panel on Climate Change’s (IPCC) Sixth Assessment Report (AR6) , an eight-year long undertaking from the world’s most authoritative scientific body on climate change. Drawing on the findings of 234 scientists on the  physical science of climate change , 270 scientists on  impacts, adaptation and vulnerability to climate change , and 278 scientists on  climate change mitigation , this  IPCC synthesis report  provides the most comprehensive, best available scientific assessment of climate change.

It also makes for grim reading. Across nearly 8,000 pages, the AR6 details the devastating consequences of rising greenhouse gas (GHG) emissions around the world — the destruction of homes, the loss of livelihoods and the fragmentation of communities, for example — as well as the increasingly dangerous and irreversible risks should we fail to change course.

But the IPCC also offers hope, highlighting pathways to avoid these intensifying risks. It identifies readily available, and in some cases, highly cost-effective actions that can be undertaken now to reduce GHG emissions, scale up carbon removal and build resilience. While the window to address the climate crisis is rapidly closing, the IPCC affirms that we can still secure a safe, livable future.

Here are 10 key findings you need to know:

1. Human-induced global warming of 1.1 degrees C has spurred changes to the Earth’s climate that are unprecedented in recent human history.

Already, with 1.1 degrees C (2 degrees F) of global temperature rise, changes to the climate system that are unparalleled over centuries to millennia are now occurring in every region of the world, from rising sea levels to more extreme weather events to rapidly disappearing sea ice.

An illustration showing evidence of global warming, including glacial retreating and sea level rise.

Additional warming will increase the magnitude of these changes. Every 0.5 degree C (0.9 degrees F) of global temperature rise, for example, will cause clearly discernible increases in the frequency and severity of heat extremes, heavy rainfall events and regional droughts. Similarly, heatwaves that, on average, arose once every 10 years in a climate with little human influence will likely occur 4.1 times more frequently with 1.5 degrees C (2.7 degrees F) of warming, 5.6 times with 2 degrees C (3.6 degrees F) and 9.4 times with 4 degrees C (7.2 degrees F) — and the intensity of these heatwaves will also increase by 1.9 degrees C (3.4 degrees F), 2.6 degrees C (4.7 degrees F) and 5.1 degrees C (9.2 degrees F) respectively.

Rising global temperatures also heighten the probability of reaching dangerous tipping points in the climate system that, once crossed, can trigger self-amplifying feedbacks that further increase global warming, such as thawing permafrost or massive forest dieback. Setting such reinforcing feedbacks in motion can also lead to other substantial, abrupt and irreversible changes to the climate system. Should warming reach between 2 degrees C (3.6 degrees F) and 3 degrees C (5.4 degrees F), for example, the West Antarctic and Greenland ice sheets could melt almost completely and irreversibly over many thousands of years, causing sea levels to rise by several meters.

2. Climate impacts on people and ecosystems are more widespread and severe than expected, and future risks will escalate rapidly with every fraction of a degree of warming.

Described as an “an atlas of human suffering and a damning indictment of failed climate leadership” by United Nations Secretary-General António Guterres, one of AR6’s most alarming conclusions is that adverse climate impacts are already more far-reaching and extreme than anticipated. About half of the global population currently contends with severe water scarcity for at least one month per year, while higher temperatures are enabling the spread of vector-borne diseases, such as malaria, West Nile virus and Lyme disease. Climate change has also slowed improvements in agricultural productivity in middle and low latitudes, with crop productivity growth shrinking by a third in Africa since 1961. And since 2008, extreme floods and storms have forced over 20 million people from their homes every year.

Every fraction of a degree of warming will intensify these threats, and even limiting global temperature rise to 1.5 degree C is not safe for all. At this level of warming, for example, 950 million people across the world’s drylands will experience water stress, heat stress and desertification, while the share of the global population exposed to flooding will rise by 24%.

A chart about comparing risks from rising temperatures.

Similarly, overshooting 1.5 degrees C (2.7 degrees F), even temporarily, will lead to much more severe, oftentimes irreversible impacts, from local species extinctions to the complete drowning of salt marshes to loss of human lives from increased heat stress. Limiting the magnitude and duration of overshooting 1.5 degrees C (2.7 degrees F), then, will prove critical in ensuring a safe, livable future, as will holding warming to as close to 1.5 degrees C (2.7 degrees F) or below as possible. Even if this temperature limit is exceeded by the end of the century, the imperative to rapidly curb GHG emissions to avoid higher levels of warming and associated impacts remains unchanged.

3. Adaptation measures can effectively build resilience, but more finance is needed to scale solutions.

Climate policies in at least 170 countries now consider adaptation, but in many nations, these efforts have yet to progress from planning to implementation. Measures to build resilience are still largely small-scale, reactive and incremental, with most focusing on immediate impacts or near-term risks. This disparity between today’s levels of adaptation and those required persists in large part due to limited finance. According to the IPCC, developing countries alone will need $127 billion per year by 2030 and $295 billion per year by 2050 to adapt to climate change. But funds for adaptation reached just $23 billion to $46 billion from 2017 to 2018, accounting for only 4% to 8% of tracked climate finance.

The good news is that the IPCC finds that, with sufficient support, proven and readily available adaptation solutions can build resilience to climate risks and, in many cases, simultaneously deliver broader sustainable development benefits.

Ecosystem-based adaptation, for example, can help communities adapt to impacts that are already devastating their lives and livelihoods, while also safeguarding biodiversity, improving health outcomes, bolstering food security, delivering economic benefits and enhancing carbon sequestration. Many ecosystem-based adaptation measures — including the protection, restoration and sustainable management of ecosystems, as well as more sustainable agricultural practices like integrating trees into farmlands and increasing crop diversity — can be implemented at relatively low costs today. Meaningful collaboration with Indigenous Peoples and local communities is critical to the success of this approach, as is ensuring that ecosystem-based adaptation strategies are designed to account for how future global temperature rise will impact ecosystems.

An illustration of how ecosystem-based adaption can protect lives and livelihoods.

4. Some climate impacts are already so severe they cannot be adapted to, leading to losses and damages.

Around the world, highly vulnerable people and ecosystems are already struggling to adapt to climate change impacts. For some, these limits are “soft” — effective adaptation measures exist, but economic, political and social obstacles constrain implementation, such as lack of technical support or inadequate funding that does not reach the communities where it’s needed most. But in other regions, people and ecosystems already face or are fast approaching “hard” limits to adaptation, where climate impacts from 1.1 degrees C (2 degrees F) of global warming are becoming so frequent and severe that no existing adaptation strategies can fully avoid losses and damages. Coastal communities in the tropics, for example, have seen entire coral reef systems that once supported their livelihoods and food security experience widespread mortality, while rising sea levels have forced other low-lying neighborhoods to move to higher ground and abandon cultural sites. 

A large bleached coral reef in Indonesia.

Whether grappling with soft or hard limits to adaptation, the result for vulnerable communities is oftentimes irreversible and devastating. Such losses and damages will only escalate as the world warms. Beyond 1.5 degrees C (2.7 degrees F) of global temperature rise, for example, regions reliant on snow and glacial melt will likely experience water shortages to which they cannot adapt. At 2 degrees C (3.6 degrees F), the risk of concurrent maize production failures across important growing regions will rise dramatically. And above 3 degrees C (5.4 degrees F), dangerously high summertime heat will threaten the health of communities in parts of southern Europe.

Urgent action is needed to avert, minimize and address these losses and damages. At COP27, countries took a critical step forward by agreeing to establish funding arrangements for loss and damage, including a dedicated fund. While this represents  a historic breakthrough  in the climate negotiations, countries must now figure out the details of what these funding arrangements, as well as the new fund , will look like in practice — and it’s these details that will ultimately determine the adequacy, accessibility, additionality and predictability of these financial flows to those experiencing loss and damage.

5. Global GHG emissions peak before 2025 in 1.5 degrees C-aligned pathways.

The IPCC finds that there is a more than 50% chance that global temperature rise will reach or surpass 1.5 degrees C (2.7 degrees F) between 2021 and 2040 across studied scenarios, and under a high-emissions pathway, specifically, the world may hit this threshold even sooner — between 2018 and 2037. Global temperature rise in such a carbon-intensive scenario could also increase to 3.3 degrees C to 5.7 degrees C (5.9 degrees F to 10.3 degrees F) by 2100. To put this projected amount of warming into perspective, the last time global temperatures exceeded 2.5 degrees C (4.5 degrees F) above pre-industrial levels was more than 3 million years ago.

Changing course to limit global warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — will instead require deep GHG emissions reductions in the near-term. In modelled pathways that limit global warming to this goal, GHG emissions peak immediately and before 2025 at the latest. They then drop rapidly, declining 43% by 2030 and 60% by 2035, relative to 2019 levels.

A chart shows GHG emission reductions needed to keep 1.5 degrees C within reach.

While there are some bright spots — the annual growth rate of GHG emissions slowed from an average of 2.1% per year between 2000 and 2009 to 1.3% per year between 2010 and 2019, for example — global progress in mitigating climate change remains woefully off track. GHG emissions have climbed steadily over the past decade, reaching 59 gigatonnes of carbon dioxide equivalent (GtCO2e) in 2019 — approximately 12% higher than in 2010 and 54% greater than in 1990.

Even if countries achieved their climate pledges (also known as nationally determined contributions or NDCs),  WRI research  finds that they would reduce GHG emissions by just 7% from 2019 levels by 2030, in contrast to the 43% associated with limiting temperature rise to 1.5 degrees C (2.7 degrees F). And while handful of countries have submitted  new or enhanced NDCs  since the IPCC’s cut-off date,  more recent analysis  that takes these submissions into account finds that these commitments collectively still fall short of closing this emissions gap.

6. The world must rapidly shift away from burning fossil fuels — the number one cause of the climate crisis.

In pathways limiting warming to 1.5 degrees C (2.7 degrees F) with no or limited overshoot just a net 510 GtCO2 can be emitted before carbon dioxide emissions reach net zero in the early 2050s. Yet future carbon dioxide emissions from existing and planned fossil fuel infrastructure alone could surpass that limit by 340 GtCO2, reaching 850 GtCO2.

Carbon dioxide emissions from existing and planned fossil fuels put 1.5 degrees C out of reach

A mix of strategies can help avoid  locking in  these emissions, including retiring existing fossil fuel infrastructure, canceling new projects, retrofitting fossil-fueled power plants with carbon capture and storage (CCS) technologies and scaling up renewable energy sources like solar and wind (which are now cheaper than fossil fuels in many regions).

In pathways that limit warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — for example, global use of coal falls by 95% by 2050, oil declines by about 60% and gas by about 45%. These figures assume significant use of abatement technologies like CCS, and without them, these same pathways show much steeper declines by mid-century. Global use of coal without CCS, for example, is virtually phased out by 2050.

Although coal-fired power plants are starting to be retired across Europe and the United States, some multilateral development banks continue to invest in new coal capacity. Failure to change course risks stranding assets worth trillions of dollars.

7. We also need urgent, systemwide transformations to secure a net-zero, climate-resilient future.

While fossil fuels are the number one source of GHG emissions, deep emission cuts are necessary across all of society to combat the climate crisis. Power generation, buildings, industry, and transport are responsible for close to 80% of global emissions while agriculture, forestry and other land uses account for the remainder.

A list of 10 key solutions to mitigate climate change including retiring coal plants, decarbonizing aviation and reducing food waste.

Take the  transport system , for instance. Drastically cutting emissions will require urban planning that minimizes the need for travel, as well as the build-out of shared, public and nonmotorized transport, such as rapid transit and bicycling in cities. Such a transformation will also entail increasing the supply of electric passenger vehicles, commercial vehicles and buses, coupled with wide-scale installation of rapid-charging infrastructure, investments in zero-carbon fuels for shipping and aviation and more.

Policy measures that make these changes less disruptive can help accelerate needed transitions, such as subsidizing zero-carbon technologies and taxing high-emissions technologies like fossil-fueled cars. Infrastructure design — like reallocating street space for sidewalks or bike lanes — can help people transition to lower-emissions lifestyles. It is important to note there are many co-benefits that accompany these transformations, too. Minimizing the number of passenger vehicles on the road, in this example, reduces harmful local air pollution and cuts traffic-related crashes and deaths.

Systems Change Lab  monitors, learns from and mobilizes action to achieve the far-reaching transformational shifts needed to limit global warming to 1.5 degrees C, halt biodiversity loss and build a just and equitable economy.

Transformative adaptation measures, too, are critical for securing a more prosperous future. The IPCC emphasizes the importance of ensuring that adaptation measures drive systemic change, cut across sectors and are distributed equitably across at-risk regions. The good news is that there are oftentimes strong synergies between transformational mitigation and adaptation. For example, in the global food system, climate-smart agriculture practices like shifting to  agroforestry  can improve resilience to climate impacts, while simultaneously advancing mitigation.  

8. Carbon removal is now essential to limit global temperature rise to 1.5 degrees C.

Deep decarbonization across all systems while building resilience won’t be enough to achieve global climate goals, though. The IPCC finds that all pathways that limit warming to 1.5 degrees C (2.7 degrees F) — with no or limited overshoot — depend on some quantity of  carbon removal . These approaches encompass both natural solutions, such as sequestering and storing carbon in trees and soil, as well as more nascent technologies that pull carbon dioxide directly from the air.

Hover over each carbon removal approach to learn more:

a long arrow with natural approaches at the top and technological approacheson the bottom

Note: This figure includes carbon removal approaches mentioned in countries' long-term climate strategies as well as other leading proposed approaches. The natural/biotic vs. technological/abiotic categorization shown here is illustrative rather than definitive and will vary depending on how approaches are applied, particularly for carbon removal approaches in the ocean.

The amount of carbon removal required depends on how quickly we reduce GHG emissions across other systems and the extent to which climate targets are overshot, with estimates ranging from between 5 GtCO2 to 16 GtCO2 per year needed by mid-century.

All carbon removal approaches have merits and drawbacks. Reforestation, for instance, represents a readily available, relatively low-cost strategy that, when implemented appropriately, can deliver a wide range of benefits to communities. Yet the carbon stored within these ecosystems is also vulnerable to disturbances like wildfires, which may increase in frequency and severity with additional warming. And, while technologies like bioenergy with carbon capture and storage (BECCS) may offer a more permanent solution, such approaches also risk displacing croplands, and in doing so, threatening food security. Responsibly researching, developing and deploying emerging carbon removal technologies, alongside existing natural approaches, will therefore require careful understanding of each solution’s unique benefits, costs and risks.

9. Climate finance for both mitigation and adaptation must increase dramatically this decade.

The IPCC finds that public and private finance flows for fossil fuels today far surpass those directed toward climate mitigation and adaptation. Thus, while annual public and private climate finance has risen by upwards of 60% since the IPCC’s Fifth Assessment Report, much more is still required to achieve global climate change goals. For instance, climate finance will need to increase between 3 and 6 times by 2030 to achieve mitigation goals, alone.

This gap is widest in developing countries, particularly those already struggling with debt, poor credit ratings and economic burdens from the COVID-19 pandemic. Recent mitigation investments, for example, need to increase by at least sixfold in Southeast Asia and developing countries in the Pacific, fivefold in Africa and fourteenfold in the Middle East by 2030 to hold warming below 2 degrees C (3.6 degrees F). And across sectors, this shortfall is most pronounced for agriculture, forestry and other land use, where recent financial flows are 10 to 31 times below what is required to achieve the Paris Agreement’s goals.

Finance for adaptation, as well as loss and damage, will also need to rise dramatically. Developing countries, for example, will need $127 billion per year by 2030 and $295 billion per year by 2050. While AR6 does not assess countries’ needs for finance to avert, minimize and address losses and damages,  recent estimates  suggest that they will be substantial in the coming decades. Current funds for both fall well below estimated needs, with the highest estimates of adaptation finance totaling under $50 billion per year.

Rows of young mangroves.

10. Climate change — as well as our collective efforts to adapt to and mitigate it — will exacerbate inequity should we fail to ensure a just transition.  

Households with incomes in the top 10%, including a relatively large share in developed countries, emit upwards of 45% of the world's GHGs, while those families earning in the bottom 50% account for 15% at most. Yet the effects of climate change already — and will continue to — hit poorer, historically marginalized communities the hardest.

Today, between 3.3 billion and 3.6 billion people live in countries that are highly vulnerable to climate impacts, with global hotspots concentrated in the Arctic, Central and South America, Small Island Developing states, South Asia and much of sub-Saharan Africa. Across many countries in these regions, conflict, existing inequalities and development challenges (e.g., poverty and limited access to basic services like clean water) not only heighten sensitivity to climate hazards, but also limit communities’ capacity to adapt.  Mortality from storms, floods and droughts, for instance, was 15 times higher in countries with high vulnerability to climate change than in those with very low vulnerability from 2010 to 2020.

At the same time, efforts to mitigate climate change also risk disruptive changes and exacerbating inequity. Retiring coal-fired power plants, for instance, may displace workers, harm local economies and reconfigure the social fabric of communities, while inappropriately implemented efforts to halt deforestation could heighten poverty and intensify food insecurity. And certain climate policies, such as  carbon taxes  that raise the cost of emissions-intensive goods like gasoline, can also prove to be regressive, absent of efforts to recycle the revenues raised from these taxes back into programs that benefit low-income communities.

Fortunately, the IPCC identifies a range of measures that can support a just transition and help ensure that no one is left behind as the world moves toward a net-zero-emissions, climate-resilient future. Reconfiguring social protection programs (e.g., cash transfers, public works programs and social safety nets) to include adaptation, for example, can reduce communities’ vulnerability to a wide range of future climate impacts, while strengthening justice and equity. Such programs are particularly effective when paired with efforts to expand access to infrastructure and basic services.

Similarly, policymakers can design mitigation strategies to better distribute the costs and benefits of reducing GHG emissions. Governments can pair efforts to phase out coal-fired electricity generation, for instance, with subsidized job retraining programs that support workers in developing the skills needed to secure new, high-quality jobs. Or, in another example, officials can couple policy interventions dedicated to expanding access to public transit with interventions to improve access to nearby, affordable housing.

Across both mitigation and adaptation measures, inclusive, transparent and participatory decision-making processes will play a central role in ensuring a just transition. More specifically, these forums can help cultivate public trust, deepen public support for transformative climate action and avoid unintended consequences.

Looking Ahead

The IPCC’s AR6 makes clear that risks of inaction on climate are immense and the way ahead requires change at a scale not seen before. However, this report also serves as a reminder that we have never had more information about the gravity of the climate emergency and its cascading impacts — or about what needs to be done to reduce intensifying risks.

Limiting global temperature rise to 1.5 degrees C (2.7 degrees F) is still possible, but only if we act immediately. As the IPCC makes clear, the world needs to peak GHG emissions before 2025 at the very latest, nearly halve GHG emissions by 2030 and reach net-zero CO2 emissions around mid-century, while also ensuring a just and equitable transition. We’ll also need an all-hands-on-deck approach to guarantee that communities experiencing increasingly harmful impacts of the climate crisis have the resources they need to adapt to this new world. Governments, the private sector, civil society and individuals must all step up to keep the future we desire in sight. A narrow window of opportunity is still open, but there’s not one second to waste.

Note: In addition to showcasing findings from the IPCC’s AR6 Synthesis Report, this article also draws on previous articles detailing the IPCC’s findings on  the physical science of climate change ,  impacts, adaption and vulnerability ,  and  climate change mitigation .

Relevant Work

6 takeaways from the 2022 ipcc climate change mitigation report, 6 big findings from the ipcc 2022 report on climate impacts, adaptation and vulnerability, 5 big findings from the ipcc’s 2021 climate report, 8 things you need to know about the ipcc 1.5˚c report.

Join us on March 23 for a high-level webinar featuring IPCC authors, government representatives and leading carbon removal experts to discuss how carbon removal is a critical tool in our toolbox to address the climate crisis.

Carbon capture.

How You Can Help

WRI relies on the generosity of donors like you to turn research into action. You can support our work by making a gift today or exploring other ways to give.

Stay Informed

World Resources Institute 10 G Street NE Suite 800 Washington DC 20002 +1 (202) 729-7600

© 2024 World Resources Institute

Envision a world where everyone can enjoy clean air, walkable cities, vibrant landscapes, nutritious food and affordable energy.

Newsroom Post

Climate change widespread, rapid, and intensifying – ipcc.

GENEVA, Aug 9 – Scientists are observing changes in the Earth’s climate in every region and across the whole climate system, according to the latest Intergovernmental Panel on Climate Change (IPCC) Report, released today. Many of the changes observed in the climate are unprecedented in thousands, if not hundreds of thousands of years, and some of the changes already set in motion—such as continued sea level rise—are irreversible over hundreds to thousands of years.

However, strong and sustained reductions in emissions of carbon dioxide (CO 2 ) and other greenhouse gases would limit climate change. While benefits for air quality would come quickly, it could take 20-30 years to see global temperatures stabilize, according to the IPCC Working Group I report, Climate Change 2021: the Physical Science Basis , approved on Friday by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on July 26.

The Working Group I report is the first instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed in 2022.

“This report reflects extraordinary efforts under exceptional circumstances,” said Hoesung Lee, Chair of the IPCC. “The innovations in this report, and advances in climate science that it reflects, provide an invaluable input into climate negotiations and decision-making.”

Faster warming

The report provides new estimates of the chances of crossing the global warming level of 1.5°C in the next decades, and finds that unless there are immediate, rapid and large-scale reductions in greenhouse gas emissions, limiting warming to close to 1.5°C or even 2°C will be beyond reach.

The report shows that emissions of greenhouse gases from human activities are responsible for approximately 1.1°C of warming since 1850-1900, and finds that averaged over the next 20 years, global temperature is expected to reach or exceed 1.5°C of warming. This assessment is based on improved observational datasets to assess historical warming, as well progress in scientific understanding of the response of the climate system to human-caused greenhouse gas emissions.

“This report is a reality check,” said IPCC Working Group I Co-Chair Valérie Masson-Delmotte. “We now have a much clearer picture of the past, present and future climate, which is essential for understanding where we are headed, what can be done, and how we can prepare.”

Every region facing increasing changes

Many characteristics of climate change directly depend on the level of global warming, but what people experience is often very different to the global average. For example, warming over land is larger than the global average, and it is more than twice as high in the Arctic.

“Climate change is already affecting every region on Earth, in multiple ways. The changes we experience will increase with additional warming,” said IPCC Working Group I Co-Chair Panmao Zhai.

The report projects that in the coming decades climate changes will increase in all regions. For 1.5°C of global warming, there will be increasing heat waves, longer warm seasons and shorter cold seasons. At 2°C of global warming, heat extremes would more often reach critical tolerance thresholds for agriculture and health, the report shows.

But it is not just about temperature. Climate change is bringing multiple different changes in different regions – which will all increase with further warming. These include changes to wetness and dryness, to winds, snow and ice, coastal areas and oceans. For example:

  • Climate change is intensifying the water cycle. This brings more intense rainfall and associated flooding, as well as more intense drought in many regions.
  • Climate change is affecting rainfall patterns. In high latitudes, precipitation is likely to increase, while it is projected to decrease over large parts of the subtropics. Changes to monsoon precipitation are expected, which will vary by region.
  • Coastal areas will see continued sea level rise throughout the 21st century, contributing to more frequent and severe coastal flooding in low-lying areas and coastal erosion. Extreme sea level events that previously occurred once in 100 years could happen every year by the end of this century.
  • Further warming will amplify permafrost thawing, and the loss of seasonal snow cover, melting of glaciers and ice sheets, and loss of summer Arctic sea ice.
  • Changes to the ocean, including warming, more frequent marine heatwaves, ocean acidification, and reduced oxygen levels have been clearly linked to human influence. These changes affect both ocean ecosystems and the people that rely on them, and they will continue throughout at least the rest of this century.
  • For cities, some aspects of climate change may be amplified, including heat (since urban areas are usually warmer than their surroundings), flooding from heavy precipitation events and sea level rise in coastal cities.

For the first time, the Sixth Assessment Report provides a more detailed regional assessment of climate change, including a focus on useful information that can inform risk assessment, adaptation, and other decision-making, and a new framework that helps translate physical changes in the climate – heat, cold, rain, drought, snow, wind, coastal flooding and more – into what they mean for society and ecosystems.

This regional information can be explored in detail in the newly developed Interactive Atlas interactive-atlas.ipcc.ch as well as regional fact sheets, the technical summary, and underlying report.

Human influence on the past and future climate

“It has been clear for decades that the Earth’s climate is changing, and the role of human influence on the climate system is undisputed,” said Masson-Delmotte. Yet the new report also reflects major advances in the science of attribution – understanding the role of climate change in intensifying specific weather and climate events such as extreme heat waves and heavy rainfall events.

The report also shows that human actions still have the potential to determine the future course of climate. The evidence is clear that carbon dioxide (CO 2 ) is the main driver of climate change, even as other greenhouse gases and air pollutants also affect the climate.

“Stabilizing the climate will require strong, rapid, and sustained reductions in greenhouse gas emissions, and reaching net zero CO 2 emissions. Limiting other greenhouse gases and air pollutants, especially methane, could have benefits both for health and the climate,” said Zhai.

For more information contact:

IPCC Press Office [email protected] , +41 22 730 8120

Katherine Leitzell [email protected]

Nada Caud (French) [email protected]

Notes for Editors

Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group I report addresses the most updated physical understanding of the climate system and climate change, bringing together the latest advances in climate science, and combining multiple lines of evidence from paleoclimate, observations, process understanding, global and regional climate simulations. It shows how and why climate has changed to date, and the improved understanding of human influence on a wider range of climate characteristics, including extreme events. There will be a greater focus on regional information that can be used for climate risk assessments.

The Summary for Policymakers of the Working Group I contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg1/

Note : Originally scheduled for release in April 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is first time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group I in numbers

234 authors from 66 countries

  • 31 – coordinating authors
  • 167 – lead authors
  • 36 – review editors
  • 517 – contributing authors

Over 14,000 cited references

A total of 78,007 expert and government review comments

(First Order Draft 23,462; Second Order Draft 51,387; Final Government Distribution: 3,158)

More information about the Sixth Assessment Report can be found here .

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups: Working Group I , dealing with the physical science basis of climate change; Working Group II , dealing with impacts, adaptation and vulnerability; and Working Group III , dealing with the mitigation of climate change. It also has a Task Force on National Greenhouse Gas Inventories that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems was launched in August 2019, and the Special Report on the Ocean and Cryosphere in a Changing Climate was released in September 2019.

In May 2019 the IPCC released the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

The other two Working Group contributions to the AR6 will be finalized in 2022 and the AR6 Synthesis Report will be completed in the second half of 2022.

For more information go to www.ipcc.ch

The website includes outreach materials including videos about the IPCC and video recordings from outreach events conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our YouTube and Vimeo channels.

  • Show search

Nighttime photo of mangroves in water, with stars in the sky.

The Latest IPCC Report: What is it and why does it matter?

The UN released a new climate report—here's what it says, and what we can do about it

Last updated March 20, 2023

This article was updated on March 20, 2023, to include findings from the most recent IPCC report.

The IPCC has released a new climate report, updating and synthesizing the findings from a series of previous reports. But what exactly is the IPCC? What do all these reports mean? Is our situation as grim as some of the news headlines make it sound?

We’ve prepared this guide to help you understand what these climate reports are, what their findings mean for our world and what we can do.

What is the IPCC and what do they do?

IPCC stands for Intergovernmental Panel on Climate Change . The IPCC is the scientific group assembled by the United Nations to monitor and assess all global science related to climate change. Every IPCC report focuses on different aspects of climate change.

This latest report is the IPCC’s 6 th Synthesis report. It updates and compiles in one report findings from all the reports in the IPCC’s sixth assessment cycle, which covered the latest climate science, the threats we’re already facing today from climate change, and what we can do to limit further temperature rises and the dangers that poses for the whole planet.

What should I know about the latest IPCC report?

There is some good news in this synthesis report. There have been promising developments in low-carbon technologies. Countries are making more ambitious national commitments to reduce their emissions and doing more to help communities adapt to the effects of climate change. And we’re seeing more funding committed for all of this work.

The problem is it’s still not enough. Even if every country in the world delivers on its current climate pledges, that’s probably not enough to keep global warming to 1.5°C above pre-industrial levels—a threshold scientists believe is necessary to avoid the worst impacts of climate change.

Current adaptation efforts, too, are scattered and leave behind some of the most vulnerable communities. And if the planet gets much warmer, we may see irreversible changes to some ecosystems around the world, which would be catastrophic for the people and wildlife that depend on them.

Want to go deeper on the findings? TNC Chief Scientist Katharine Hayhoe breaks them down in this Twitter thread .

research report on global warming

Our global insights, straight to your inbox

Get our latest research, insights and solutions to today’s sustainability challenges.

Sign up now >

Is there any hope then?

Yes. Climate change is here today, reshaping our world in ways big and small—but that doesn’t mean our future is predetermined. Every fraction of a degree of warming makes a big difference in how powerful the effects of climate change will be, including the frequency and intensity of heatwaves, storms, floods and droughts. That means every action we take to limit further warming makes a big difference, especially for vulnerable communities around the world.

We need bolder global climate commitments, and we need them fast so we can transition to clean energy and reach “net zero” emissions as soon possible . And as the IPCC's reports shows, we’ll not only need to cut out emissions—we’ll have to remove some of the carbon that’s already in the atmosphere. Fortunately, nature created a powerful technology that does just that: photosynthesis . Plants naturally absorb carbon from the air and store it in their roots and in the soil.

In addition to phasing out fossil fuels, we also need to protect the natural habitats around the world that store billions of tons of this “living carbon.” We can also help by changing the way we manage working lands like farms and timber forests so they retain more carbon, and restore natural habitats on lands that have been cleared or degraded.  

What can we do to stop climate change?

A global challenge like climate change requires global solutions. It will require movement-building and on-the-ground action, as well as new national policies and economic transformations. Here’s a few things that communities, governments, and business can do.  

Communities

  • When it comes to working with nature to fight climate change, we cannot achieve effective action without the leadership of Indigenous Peoples and local communities (IPLCs).
  • These communities are some of the most important protectors of the world’s living carbon, as lands owned or managed by IPLCs often have much lower deforestation rates than government protected areas. In fact, Indigenous-managed lands support about 80 percent of the world’s remaining biodiversity and 17 percent of the planet’s forest carbon.
  • To help Indigenous groups keep playing this crucial role, governments must formally recognize their land and resource rights, and funding for climate action should include support for their communities.

Related reading: Protecting nature through authentic partnerships.  

Governments

  • All countries—especially the wealthy countries that generate the most emissions— must create more ambitious climate action plans to eliminate emissions and pull more carbon from their atmosphere—and they need to follow through on them.
  • In addition to cutting fossil fuel use, this can be done investing more in nature . The IPCC estimates it would cost about $400 billion to make the changes to agriculture, forestry and other land uses required to limit emissions. That sounds like a lot—but it’s less than the government subsidies these sectors are already receiving .
  • The best part? Many of these natural climate solutions benefit society in other ways , like improving air and water quality, producing more food and protecting the variety of natural life we all depend on.

Related reading: Canada's new climate plan includes working with nature to reduce emissions.

  • Like national governments, businesses must first and foremost commit to reaching net-zero emissions in their operations—they have to stop putting more carbon into the air.
  • The most direct way to do this is to switch to clean energy sources . Transitioning to renewable energy provides a low-cost, low-carbon, low-conflict pathway to meet global energy needs without harming nature and communities.
  • Those sectors that will have a hard time reducing their emissions today—like airlines, for example—should find ways to offset their impact.
  • Carbon markets offer one way to achieve this. Carbon markets allow businesses and other polluters to purchase “offsets” for their unavoidable emissions, which pay to protect natural lands that would have otherwise been cleared without that funding or restore those that would not recover. 

Related reading: An illustrated guide to carbon offsets.

What can I do as an individual?

  • Learn how to talk about climate change: We can all help by engaging and educating others. Our guide will help you feel comfortable raising these topics at the dinner table with your friends and family. Download our guide to talk about climate change.
  • Share your thoughts: Share this page on your social channels so others know what they can do, too. Here are some hashtags to join the conversation: #IPCC #ClimateAction #NatureNow
  • Join collective action : By speaking collectively, we can influence climate action at the national and global levels. You can add your name to stand with The Nature Conservancy in calling for real solutions now.
  • Keep learning : Educate yourself and share the knowledge—you can start with some of these articles, videos, and other resources .

Videos: Climate Issues Explained

research report on global warming

Climate Action Resources

research report on global warming

Natural Climate Solutions Handbook

October 2021

A technical guide for assessing nature-based mitigation opportunities in countries More information on Natural Climate Solutions

 Thumbnail of report download cover

Playbook for Climate Action

This playbook showcases five innovative pathways for reducing emissions and climate impacts. A comprehensive suite of science-based solutions, the playbook presents actions governments and companies can deploy—and scale—today. Visit the Digital Version

Further Reading

A wind turbine off the Atlantic coast near Rhode Island, USA.

COP28: Your Guide to the 2023 UN Climate Change Conference in UAE

COP28 takes place November 30-December 12, 2023 in United Arab Emirates. This guide will tell you what to expect at COP28, why TNC will be there, and what it all means for you.

A drooping mangrove tree with branches just above the surface of a tidal pool boasts green leaves

Climate Change FAQs

You asked. Our scientists answered. Use this guide to have the best info about climate change and how we can solve it together.

Healthy mangroves for resilient coasts.

Coastal Risk And Resilience

Recognizing the Protective Value of Nature

Global Insights

To get more tips like this, plus feature stories and the latest news from the world of nature, sign up for our monthly newsletter.

  • News, Stories & Speeches
  • Get Involved
  • Structure and leadership
  • Committee of Permanent Representatives
  • UN Environment Assembly
  • Funding and partnerships
  • Policies and strategies
  • Evaluation Office
  • Secretariats and Conventions

View of earth from space

  • Asia and the Pacific
  • Latin America and the Caribbean
  • New York Office
  • North America
  • Climate action
  • Nature action
  • Chemicals and pollution action
  • Digital Transformations
  • Disasters and conflicts
  • Environment under review
  • Environmental rights and governance
  • Extractives
  • Fresh Water
  • Green economy
  • Ocean, seas and coasts
  • Resource efficiency
  • Sustainable Development Goals
  • Youth, education and environment
  • Publications & data

research report on global warming

Climate Change 2023: Synthesis Report

Report Cover

The much-anticipated  Climate Change 2023: Synthesis Report  is based on years of work by hundreds of scientists during the Intergovernmental Panel on Climate Change ’s (IPCC) sixth assessment cycle which began in 2015.

The report provides the main scientific input to COP28 and the Global Stocktake at the end of this year, when countries will review progress towards the Paris Agreement goals.

The report reiterates that humans are responsible for all global heating over the past 200 years leading to a current temperature rise of 1.1°C above pre-industrial levels, which has led to more frequent and hazardous weather events that have caused increasing destruction to people and the planet. The report reminds us that every increment of warming will come with more extreme weather events. 

The report outlines that the 1.5°C limit is still achievable and outlines the critical action required across sectors and by everyone at all levels. The report focuses on the critical need for action that considers climate justice and focuses on climate resilient development. It outlines that by sharing best practices, technology, effective policy measures, and mobilising sufficient finance, any community can decrease or prevent the usage of carbon-intensive consumption methods. The biggest gains in well-being can be achieved by prioritizing climate risk reduction for low-income and marginalized communities.

research report on global warming

© 2024 UNEP Terms of Use Privacy   Report Project Concern Report Scam Contact Us

' class=

We're moving!

slide 2 - the Earth as seen from space

Understanding our planet to benefit humankind

News & features.

More

What Is Climate Change?

How do we know climate change is real, why is climate change happening, what are the effects of climate change, what is being done to solve climate change, earth science in action.

two people talking on a boat

More to Explore

Ask nasa climate.

bright image of Earth's horizon from space

People Profiles

people with scopes and binoculars

Images of Change

Before-and-after images of earth, climate change resources, an extensive collection of global warming resources for media, educators, weathercasters, and public speakers..

  • Images of Change Before-and-after images of Earth
  • Global Ice Viewer Climate change's impact on ice
  • Earth Minute Videos Animated video series illustrating Earth science topics
  • Climate Time Machine Climate change in recent history
  • Multimedia Vast library of images, videos, graphics, and more
  • En español Creciente biblioteca de recursos en español
  • For Educators Student and educator resources
  • For Kids Webquests, Climate Kids, and more

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Key natural hazards statistics from 1978 to 2020
Country1978 change2018Absolute changeRelative
Drought630 − 63 − 100%
Earthquake25,1624,321 − 20,841 − 83%
Extreme temperature150536 + 386 + 257%
Extreme weather36761,666 − 2,010 − 55%
Flood5,8972,869 − 3,028 − 51%
Landslide86275 + 189 + 220%
Mass movement5017 − 33 − 66%
Volcanic activity268878 + 610 + 228%
Wildfire2247 + 245 + 12,250%
All − natural disasters35,03610,809 − 24,227 − 69%

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Environmental modificationsPotential diseasesThe causative organisms and pathway of effect
Construction of canals, dams, irrigation pathwaysSchistosomiasisSnail host locale, human contact
MalariaUpbringing places for mosquitoes
HelminthiasesLarval contact due to moist soil
River blindnessBlackfly upbringing
Agro-strengtheningMalariaCrop pesticides
Venezuelan hemorrhagic feverRodent abundance, contact
SuburbanizationCholeradeprived hygiene, asepsis; augmented water municipal assembling pollution
DengueWater-gathering rubbishes Aedes aegypti mosquito upbringing sites
Cutaneous leishmaniasisPSandfly vectors
Deforestation and new tenancyMalariaUpbringing sites and trajectories, migration of vulnerable people
Oropoucheupsurge contact, upbringing of directions
Visceral leishmaniasisRecurrent contact with sandfly vectors
AgricultureLyme diseaseTick hosts, outside revelation
Ocean heatingRed tidePoisonous algal blooms

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

AttributesDescriptionForestry example
PurposefulnessAutonomousIncludes continuing application of prevailing information and techniques in retort to experienced climate change

Thin to reduce drought stress; construct breaks in vegetation to

Stop feast of wildfires, vermin, and ailments

TimingPreemptiveNecessitates interactive change to diminish future injury, jeopardy, and weakness, often through planning, observing, growing consciousness, structure partnerships, and ornamental erudition or investigation

Ensure forest property against potential future losses; transition to

species or stand erections that are better reformed to predictable

future conditions; trial with new forestry organization

practices

ScopeIncremental

Involves making small changes in present circumstances to circumvent disturbances

and ongoing to chase the same purposes

Condense rotation pauses to decrease the likelihood of harm to storm Events, differentiate classes to blowout jeopardy; thin to lessening compactness and defenselessness of jungle stands to tension
GoalOppositionShield or defend from alteration; take procedures to reservation constancy and battle changeGenerate refugia for rare classes; defend woodlands from austere fire and wind uproar; alter forest construction to reduce harshness or extent of wind and ice impairment; establish breaks in vegetation to dampen the spread of vermin, ailments, and wildfire

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Kosuke Imai and James Greiner.

Does AI help humans make better decisions?

Upper Mustang region of Nepal.

Tracking entwined histories of malaria, humans

Photo of Bence Ölveczky with mouse models.

Want to make robots more agile? Take a lesson from a rat.

Exxon disputed climate findings for years. its scientists knew better..

View of ExxonMobil storage tanks of the petrochemical industry in the port of Rotterdam, Netherlands.

AP Photo/Peter Dejong

Alice McCarthy

Harvard Correspondent

Research shows that company modeled and predicted global warming with ‘shocking skill and accuracy’ starting in the 1970s

Projections created internally by ExxonMobil starting in the late 1970s on the impact of fossil fuels on climate change were very accurate, even surpassing those of some academic and governmental scientists, according to an analysis published Thursday in Science by a team of Harvard-led researchers. Despite those forecasts, team leaders say, the multinational energy giant continued to sow doubt about the gathering crisis.

In “Assessing ExxonMobil’s Global Warming Projections,” researchers from Harvard and the Potsdam Institute for Climate Impact Research show for the first time the accuracy of previously unreported forecasts created by company scientists from 1977 through 2003. The Harvard team discovered that Exxon researchers created a series of remarkably reliable models and analyses projecting global warming from carbon dioxide emissions over the coming decades. Specifically, Exxon projected that fossil fuel emissions would lead to 0.20 degrees Celsius of global warming per decade, with a margin of error of 0.04 degrees — a trend that has been proven largely accurate.

“This paper is the first ever systematic assessment of a fossil fuel company’s climate projections, the first time we’ve been able to put a number on what they knew,” said Geoffrey Supran, lead author and former research fellow in the History of Science at Harvard. “What we found is that between 1977 and 2003, excellent scientists within Exxon modeled and predicted global warming with, frankly, shocking skill and accuracy only for the company to then spend the next couple of decades denying that very climate science.”

“This paper is the first ever systematic assessment of a fossil fuel company’s climate projections, the first time we’ve been able to put a number on what they knew,” said Geoffrey Supran, lead author.

File photo by Stephanie Mitchell/Harvard Staff Photographer

“We thought this was a unique opportunity to understand what Exxon knew about this issue and what level of scientific understanding they had at the time,” added co-author Naomi Oreskes , Henry Charles Lea Professor of the History of Science whose work looks at the causes and effects of climate change denial. “We found that not only were their forecasts extremely skillful, but they were also often more skillful than forecasts made by independent academic and government scientists at the exact same time.”

Allegations that oil company executives sought to mislead the public about the industry’s role in climate change have drawn increasing scrutiny in recent years, including lawsuits by several states and cities and a recent high profile U.S. House committee investigation.

Harvard’s scientists used established Intergovernmental Panel on Climate Change (IPCC) statistical techniques to test the performance of Exxon’s models. They found that, depending on the metric used, 63-83 percent of the global warming projections reported by Exxon scientists were consistent with actual temperatures over time. Moreover, the corporation’s own projections had an average “skill score” of 72 percent, plus or minus 6 percent, with the highest scoring 99 percent. A skill score relates to how well a forecast compares to what happens in real life. For comparison, NASA scientist James Hansen’s global warming predictions presented to the U.S. Congress in 1988 had scores from 38 to 66 percent.

The researchers report that Exxon scientists correctly dismissed the possibility of a coming ice age, accurately predicted that human-caused global warming would first be detectable in the year 2000, plus or minus five years, and reasonably estimated how much CO 2 would lead to dangerous warming.

The current debate about when Exxon knew about the impact on climate change carbon emissions began in 2015 following news reports of internal company documents describing the multinational’s early knowledge of climate science.  Exxon disagreed with the reports, even providing a link to internal studies and memos from their own scientists and suggesting that interested parties should read them and make up their own minds.

“That’s exactly what we did,” said Supran, who is now at the University of Miami. Together, he and Oreskes spent a year researching those documents and in 2017 published a series of three papers analyzing Exxon’s 40-year history of climate communications . They were able to show there was a systematic discrepancy between what Exxon was saying internally and in academic circles versus what they were telling the public. “That led us to conclude that they had quantifiably misled the public, by essentially contributing quietly to climate science and yet loudly promoting doubt about that science,” said Supran.

“I think this new study is the smoking gun, the proof, because it shows the degree of understanding … this really deep, really sophisticated, really skillful understanding that was obscured by what came next,” said Harvard Professor Naomi Oreskes.

Harvard file photo

In 2021, the team published a new study in One Earth using algorithmic techniques to identify ways in which ExxonMobil used increasingly subtle but systematic language to shape the way the public talks and thinks about climate change — often in misleading ways.

These findings were hardly a surprise to Oreskes, given her long history of studying climate communications from fossil fuel companies, work that drew national attention with her 2010 bestseller, “Merchants of Doubt.” In it she and co-author, Caltech researcher Erik Conway, argued that Exxon was aware of the threat of carbon emissions on climate change yet waged a disinformation campaign about the problem.  Despite the book’s popularity and the peer-reviewed papers with Supran, however, some continued to wonder whether she could prove the effect these campaigns had, if they indeed made a difference.

“I think this new study is the smoking gun, the proof, because it shows the degree of understanding … this really deep, really sophisticated, really skillful understanding that was obscured by what came next,” Oreskes said. “It proves a point I’ve argued for years that ExxonMobil scientists knew about this problem to a shockingly fine degree as far back as the 1980s, but company spokesmen denied, challenged, and obscured this science, starting in the late 1980s/early 1990s.”

Added Supran: “Our analysis here I think seals the deal on that matter. We now have totally unimpeachable evidence that Exxon accurately predicted global warming years before it turned around and publicly attacked climate science and scientists.”

The authors of this research were supported by a Rockefeller Family Fund grant and Harvard University Faculty Development funds.

Share this article

You might like.

One judge’s track record — with and without algorithm — surprises researchers

Upper Mustang region of Nepal.

New study of ancient genomes tracks disease over 5,500 years, factors in spread, including trade, warfare, colonialism, and slavery

Photo of Bence Ölveczky with mouse models.

Scientists create realistic virtual rodent with digital neural network to study how brain controls complex, coordinated movement

More than a planetary fender-bender

New study finds Earth collided with dense interstellar cloud, possibly affecting life on planet

Alzheimer’s disease indicators track with biological changes in brain, study finds

Researchers see self-reported memory loss may be early, preclinical warning

Testing fitness of aging brain

Most voters back cognitive exams for older politicians. What do they measure?

research report on global warming

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The Fifth National Climate Assessment

The Fifth National Climate Assessment is the US Government’s preeminent report on climate change impacts, risks, and responses. It is a congressionally mandated interagency effort that provides the scientific foundation to support informed decision-making across the United States.

Fifth National Climate Assessment 1. Overview Understanding Risks, Impacts, and Responses

  • Addressing Climate Change
  • Experiencing Climate Change
  • Current and Future Risks
  • Determining the Future
  • A Resilient Nation

How the United States Is Addressing Climate Change

The effects of human-caused climate change are already far-reaching and worsening across every region of the United States. Rapidly reducing greenhouse gas emissions can limit future warming and associated increases in many risks. Across the country, efforts to adapt to climate change and reduce emissions have expanded since 2018, and US emissions have fallen since peaking in 2007. However, without deeper cuts in global net greenhouse gas emissions and accelerated adaptation efforts, severe climate risks to the United States will continue to grow.

Future climate change impacts depend on choices made today

The more the planet warms, the greater the impacts. Without rapid and deep reductions in global greenhouse gas emissions from human activities, the risks of accelerating sea level rise, intensifying extreme weather, and other harmful climate impacts will continue to grow. Each additional increment of warming is expected to lead to more damage and greater economic losses compared to previous increments of warming, while the risk of catastrophic or unforeseen consequences also increases. { 2.3 , 19.1 }

However, this also means that each increment of warming that the world avoids—through actions that cut emissions or remove carbon dioxide (CO 2 ) from the atmosphere—reduces the risks and harmful impacts of climate change. While there are still uncertainties about how the planet will react to rapid warming, the degree to which climate change will continue to worsen is largely in human hands. { 2.3 , 3.4 }

In addition to reducing risks to future generations, rapid emissions cuts are expected to have immediate health and economic benefits (Figure 1.1 ). At the national scale, the benefits of deep emissions cuts for current and future generations are expected to far outweigh the costs. { 2.1 , 2.3 , 13.3 , 14.5 , 15.3 , 32.4 ; Ch. 2, Introduction }

Climate Change Risks and Opportunities in the US

US emissions have decreased, while the economy and population have grown

Annual US greenhouse gas emissions fell 12% between 2005 and 2019. This trend was largely driven by changes in electricity generation: coal use has declined, while the use of natural gas and renewable technologies has increased, leading to a 40% drop in emissions from the electricity sector. Since 2017, the transportation sector has overtaken electricity generation as the largest emitter. { 11.1 , 13.1 , 32.1 ; Figures 32.1 , 32.3 }

As US emissions have declined from their peak in 2007, the country has also seen sustained reductions in the amount of energy required for a given quantity of economic activity and the emissions produced per unit of energy consumed. Meanwhile, both population and per capita GDP have continued to grow. { 32.1 ; Figures 32.1 , 32.2 }

Recent growth in the capacities of wind, solar, and battery storage technologies is supported by rapidly falling costs of zero- and low-carbon energy technologies, which can support even deeper emissions reductions. For example, wind and solar energy costs dropped 70% and 90%, respectively, over the last decade, while 80% of new generation capacity in 2020 came from renewable sources (Figures 1.2 , 1.3 ). { 5.3 , 12.3 , 32.1 , 32.2 ; Figure A4.17 }

Across all sectors, innovation is expanding options for reducing energy demand and increasing energy efficiency, moving to zero- and low-carbon electricity and fuels, electrifying energy use in buildings and transportation, and adopting practices that protect and improve natural carbon sinks that remove and store CO 2 from the atmosphere, such as sustainable agricultural and land-management practices. { 11.1 , 32.2 , 32.3 ; Boxes 32.1 , 32.2 ; Focus on Blue Carbon }

Historical Trends in Unit Costs and Deployment of Low-Carbon Energy Technologies in the United States

Accelerating advances in adaptation can help reduce rising climate risks

As more people face more severe climate impacts, individuals, organizations, companies, communities, and governments are taking advantage of adaptation opportunities that reduce risks. State climate assessments and online climate services portals are providing communities with location- and sector-specific information on climate hazards to support adaptation planning and implementation across the country. New tools, more data, advancements in social and behavioral sciences, and better consideration of practical experiences are facilitating a range of actions (Figure 1.3 ). { 7.3 , 12.3 , 21.4 , 25.4 , 31.1 , 31.5 , 32.5 ; Table 31.1 }

Actions include:

Implementing nature-based solutions—such as restoring coastal wetlands or oyster reefs—to reduce shoreline erosion { 8.3 , 9.3 , 21.2 , 23.5 }

Upgrading stormwater infrastructure to account for heavier rainfall { 4.2 }

Applying innovative agricultural practices to manage increasing drought risk { 11.1 , 22.4 , 25.5 }

Assessing climate risks to roads and public transit { 13.1 }

Managing vegetation to reduce wildfire risk { 5.3 }

Developing urban heat plans to reduce health risks from extreme heat { 12.3 , 21.1 , 28.4 }

Planning relocation from high-risk coastal areas { 9.3 }

Despite an increase in adaptation actions across the country, current adaptation efforts and investments are insufficient to reduce today’s climate-related risks and keep pace with future changes in the climate. Accelerating current efforts and implementing new ones that involve more fundamental shifts in systems and practices can help address current risks and prepare for future impacts (see “Mitigation and adaptation actions can result in systemic, cascading benefits” below). { 31.1 , 31.3 }

Climate action has increased in every region of the US

Efforts to adapt to climate change and reduce net greenhouse gas emissions are underway in every US region and have expanded since 2018 (Figure 1.3 ; Table 1.1 ). Many actions can achieve both adaptation and mitigation goals. For example, improved forest- or land-management strategies can both increase carbon storage and protect ecosystems, and expanding renewable energy options can reduce emissions while also improving resilience. { 31.1 , 32.5 }

US Adaptation and Mitigation Actions

Climate adaptation and mitigation efforts involve trade-offs, as climate actions that benefit some or even most people can result in burdens to others. To date, some communities have prioritized equitable and inclusive planning processes that consider the social impacts of these trade-offs and help ensure that affected communities can participate in decision-making. As additional measures are implemented, more widespread consideration of their social impact can help inform decisions around how to distribute the outcomes of investments. { 12.4 , 13.4 , 20.2 , 21.3 , 21.4 , 26.4 , 27.1 , 31.2 , 32.4 , 32.5 ; Box 20.1 }

Region Action
Northeast The 2022 stormwater code in Pittsburgh, Pennsylvania, requires new developments to plan for projected increases in heavy rainfall under climate change rather than building to historical rainfall amounts. In 2021, the city also committed to achieve carbon neutrality by 2050. {Box }
Southeast Following repeated flooding from multiple hurricanes, measures to reduce flood risk in Princeville, North Carolina, include buyouts, elevating homes, and building housing that meets local flood standards. In Orlando, Florida, the city and businesses are adopting commercial building energy-efficiency requirements and electric vehicle readiness policies and have used wastewater and food scraps from parks and resorts to generate renewable biogas. {Boxes , }
US Caribbean Many community-based organizations in Puerto Rico have undertaken actions to advance adaptation, social transformation, and sustainable development. These organizations work to expand renewable energy and equitable access to energy resources, prepare for disasters, restore ecosystems, strengthen agriculture and food security, and protect public health. { }
Midwest A wetland creation project in Ashtabula, Ohio, restored habitat displaced by shoreline development, improving coastal protection for the port on Lake Erie. In Michigan, some state forestlands are being managed to bolster carbon storage and to support recreation and wildlife habitat. { , ; Figure }
Northern Great Plains The Nebraska Natural Resources Conservation Service supported farmers in testing soil health and evaluating soil management practices that promote climate adaptation. Across the region, wind electricity generation tripled between 2011 and 2021, with a growing number of Tribes leading the Nation’s renewable energy transition by installing wind, solar, and hydropower. { , ; Box }
Southern Great Plains Texas- and Kansas-based groups are supporting soil and land management practices that increase carbon storage while protecting important ecosystems. Wind and solar energy generation and battery storage capacities have also grown, with the region accounting for 42% of national wind-generated electricity in 2022. { }
Northwest The Confederated Tribes of the Colville Reservation are prioritizing carbon capture in their forest and timber management efforts, leading to improved air and water quality and wildlife habitat as well as preservation of cultural areas and practices. { }
Southwest In response to severe drought, seven Colorado River basin states, the US and Mexican governments, and Indigenous Peoples are collaborating to improve water conservation and develop adaptation solutions. Dozens of cities are committed to emissions reductions; for instance, Phoenix is on track to meet a 2030 goal of 50% reduction in greenhouse gas emissions from 2018 levels. {Ch. ; Box }
Alaska To address climate threats to traditional foods, the Chugach Regional Resources Commission is integrating Indigenous Knowledge and Western scientific methods in its adaptation efforts, including weekly water sampling for harmful algal blooms and restoring clam populations. Kelp farming is also being developed to reduce the effects of ocean acidification, serve as a carbon sink, and generate income. { ; Box }
Hawai‘i and US-Affiliated Pacific Islands The Kauaʻi Island Utility Cooperative achieved a 69.5% renewable portfolio standard in 2021, and the island is occasionally 100% renewably powered during midday hours; it is projected to achieve a 90% renewable portfolio by 2026. Guam, the Republic of the Marshall Islands, the Federated States of Micronesia, and Palau plan to use blue carbon ecosystems to offset emissions while also protecting coastal infrastructure. { ; Box }

Meeting US mitigation targets means reaching net-zero emissions

The global warming observed over the industrial era is unequivocally caused by greenhouse gas emissions from human activities—primarily burning fossil fuels. Atmospheric concentrations of carbon dioxide (CO 2 )—the primary greenhouse gas produced by human activities—and other greenhouse gases continue to rise due to ongoing global emissions. Stopping global warming would require both reducing emissions of CO 2 to net zero and rapid and deep reductions in other greenhouse gases. Net-zero CO 2 emissions means that CO 2 emissions decline to zero or that any residual emissions are balanced by removal from the atmosphere. { 2.3 , 3.1 ; Ch. 32 }

Once CO 2 emissions reach net zero, the global warming driven by CO 2 is expected to stop: additional warming over the next few centuries is not necessarily “locked in” after net CO 2 emissions fall to zero. However, global average temperatures are not expected to fall for centuries unless CO 2 emissions become net negative, which is when CO 2 removal from the atmosphere exceeds CO 2 emissions from human activities. Regardless of when or if further warming is avoided, some long-term responses to the temperature changes that have already occurred will continue. These responses include sea level rise, ice sheet losses, and associated disruptions to human health, social systems, and ecosystems. In addition, the ocean will continue to acidify after the world reaches net-zero CO 2 emissions, as it continues to gradually absorb CO 2 in the atmosphere from past emissions. { 2.1 , 2.3 , 3.1 ; Ch. 2, Introduction }

National and international commitments seek to limit global warming to well below 2°C (3.6°F), and preferably to 1.5°C (2.7°F), compared to preindustrial temperature conditions (defined as the 1850–1900 average). To achieve this, global CO 2 emissions would have to reach net zero by around 2050 (Figure 1.4 ); global emissions of all greenhouse gases would then have to reach net zero within the following few decades. { 2.3 , 32.1 }

Future Global Carbon Dioxide Emissions Pathways

While US greenhouse gas emissions are falling, the current rate of decline is not sufficient to meet national and international climate commitments and goals. US net greenhouse gas emissions remain substantial and would have to decline by more than 6% per year on average, reaching net-zero emissions around midcentury, to meet current national mitigation targets and international temperature goals; by comparison, US greenhouse gas emissions decreased by less than 1% per year on average between 2005 and 2019. { 32.1 }

Many cost-effective options that are feasible now have the potential to substantially reduce emissions over the next decade. Faster and more widespread deployment of renewable energy and other zero- and low-carbon energy options can accelerate the transition to a decarbonized economy and increase the chances of meeting a 2050 national net-zero greenhouse gas emissions target for the US. However, to reach the US net-zero emissions target, additional mitigation options need to be explored and advanced (see “Available mitigation strategies can deliver substantial emissions reductions, but additional options are needed to reach net zero” below). { 5.3 , 6.3 , 32.2 , 32.3 }

Jay, A.K., A.R. Crimmins, C.W. Avery, T.A. Dahl, R.S. Dodder, B.D. Hamlington, A. Lustig, K. Marvel, P.A. Méndez-Lazaro, M.S. Osler, A. Terando, E.S. Weeks, and A. Zycherman, 2023: Ch. 1. Overview: Understanding risks, impacts, and responses. In: Fifth National Climate Assessment . Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, Eds. U.S. Global Change Research Program, Washington, DC, USA. https://doi.org/10.7930/NCA5.2023.CH1

How the United States Is Experiencing Climate Change

As extreme events and other climate hazards intensify, harmful impacts on people across the United States are increasing. Climate impacts—combined with other stressors—are leading to ripple effects across sectors and regions that multiply harms, with disproportionate effects on underserved and overburdened communities.

Current climate changes are unprecedented over thousands of years

Global greenhouse gas emissions from human activities continue to increase, resulting in rapid warming (Figure 1.5 ) and other large-scale changes, including rising sea levels, melting ice, ocean warming and acidification, changing rainfall patterns, and shifts in timing of seasonal events. Many of the climate conditions and impacts people are experiencing today are unprecedented for thousands of years (Figure 1.6 ). { 2.1 , 3.1 ; Figures A4.6 , A4.7 , A4.10 , A4.13 }

US and Global Changes in Average Surface Temperature

As the world’s climate has shifted toward warmer conditions, the frequency and intensity of extreme cold events have declined over much of the US, while the frequency, intensity, and duration of extreme heat have increased. Across all regions of the US, people are experiencing warming temperatures and longer-lasting heatwaves. Over much of the country, nighttime temperatures and winter temperatures have warmed more rapidly than daytime and summer temperatures. Many other extremes, including heavy precipitation, drought, flooding, wildfire, and hurricanes, are becoming more frequent and/or severe, with a cascade of effects in every part of the country. { 2.1 , 2.2 , 3.4 , 4.1 , 4.2 , 7.1 , 9.1 ; Ch. 2, Introduction ; App. 4 ; Focus on Compound Events }

Risks from extreme events are increasing

One of the most direct ways that people experience climate change is through changes in extreme events. Harmful impacts from more frequent and severe extremes are increasing across the country—including increases in heat-related illnesses and death, costlier storm damages, longer droughts that reduce agricultural productivity and strain water systems, and larger, more severe wildfires that threaten homes and degrade air quality. { 2.2 , 4.2 , 12.2 , 14.2 , 15.1 , 19.2 ; Focus on Western Wildfires }

Extreme weather events cause direct economic losses through infrastructure damage, disruptions in labor and public services, and losses in property values. The number and cost of weather-related disasters have increased dramatically over the past four decades, in part due to the increasing frequency and intensity of extreme events and in part due to increases in assets at risk (through population growth, rising property values, and continued development in hazard-prone areas). Low-income communities, communities of color, and Tribes and Indigenous Peoples experience high exposure and vulnerability to extreme events due to both their proximity to hazard-prone areas and lack of adequate infrastructure or disaster management resources. { 2.2 , 4.2 , 17.3 , 19.1 ; Focus on Compound Events }

In the 1980s, the country experienced, on average, one (inflation-adjusted) billion-dollar disaster every four months. Now, there is one every three weeks, on average. Between 2018 and 2022, the US experienced 89 billion-dollar events (Figure 1.7 ). Extreme events cost the US close to $150 billion each year—a conservative estimate that does not account for loss of life, healthcare-related costs, or damages to ecosystem services. { 2.2 , 19.1 ; Ch. 2, Introduction ; Figures 4.1 , A4.5 }

Damages by State from Billion-Dollar Disasters (2018–2022)

Cascading and compounding impacts increase risks

The impacts and risks of climate change unfold across interacting sectors and regions. For example, wildfire in one region can affect air quality and human health in other regions, depending on where winds transport smoke. Further, climate change impacts interact with other stressors, such as the COVID-19 pandemic, environmental degradation, or socioeconomic stressors like poverty and lack of adequate housing that disproportionately impact overburdened communities. These interactions and interdependencies can lead to cascading impacts and sudden failures. For example, climate-related shocks to the food supply chain have led to local to global impacts on food security and human migration patterns that affect US economic and national security interests. { 11.3 , 17.1 , 17.2 , 17.3 , 18.1 , 22.3 , 23.4 , 31.3 ; Introductions in Chs. 2 , 17 , 18 ; Focus on Compound Events ; Focus on Risks to Supply Chains ; Focus on COVID-19 and Climate Change }

The risk of two or more extreme events occurring simultaneously or in quick succession in the same region—known as compound events—is increasing. Climate change is also increasing the risk of multiple extremes occurring simultaneously in different locations that are connected by complex human and natural systems. For instance, simultaneous megafires across multiple western states and record back-to-back Atlantic hurricanes in 2020 caused unprecedented demand on federal emergency response resources. { 2.2 , 3.2 , 15.1 , 22.2 , 26.4 ; Focus on Compound Events ; Ch. 4, Introduction }

Compound events often have cascading impacts that cause greater harm than individual events. For example, in 2020, record-breaking heat and widespread drought contributed to concurrent destructive wildfires across California, Oregon, and Washington, exposing millions to health hazards and straining firefighting resources. Ongoing drought amplified the record-breaking Pacific Northwest heatwave of June 2021, which was made 2° to 4°F hotter by climate change. The heatwave led to more than 1,400 heat-related deaths, another severe wildfire season, mass die-offs of fishery species important to the region’s economy and Indigenous communities, and total damages exceeding $38.5 billion (in 2022 dollars). { 27.3 ; Ch. 2, Introduction ; Focus on Compound Events , Focus on Western Wildfires }

Climate change exacerbates inequities

Some communities are at higher risk of negative impacts from climate change due to social and economic inequities caused by ongoing systemic discrimination, exclusion, and under- or disinvestment. Many such communities are also already overburdened by the cumulative effects of adverse environmental, health, economic, or social conditions. Climate change worsens these long-standing inequities, contributing to persistent disparities in the resources needed to prepare for, respond to, and recover from climate impacts. { 4.2 , 9.2 , 12.2 , 14.3 , 15.2 , 16.1 , 16.2 , 18.2 , 19.1 , 20.1 , 20.3 , 21.3 , 22.1 , 23.1 , 26.4 , 27.1 , 31.2 }

For example, low-income communities and communities of color often lack access to adequate flood infrastructure, green spaces, safe housing, and other resources that help protect people from climate impacts. In some areas, patterns of urban growth have led to the displacement of under-resourced communities to suburban and rural areas with less access to climate-ready housing and infrastructure. Extreme heat can lead to higher rates of illness and death in low-income neighborhoods, which are hotter on average (Figure 1.8 ). Neighborhoods that are home to racial minorities and low-income people have the highest inland (riverine) flood exposures in the South, and Black communities nationwide are expected to bear a disproportionate share of future flood damages—both coastal and inland (Figure 1.9 ). { 4.2 , 11.3 , 12.2 , 15.1 , 22.1 , 22.2 , 26.4 , 27.1 ; Ch. 2, Introduction }

Land Surface Temperature and Its Relationship to Median Household Income for Three Cities

These disproportionate impacts are partly due to exclusionary housing practices—both past and ongoing—that leave underserved communities with less access to heat and flood risk-reduction strategies and other economic, health, and social resources. For example, areas that were historically redlined—a practice in which lenders avoided providing services to communities, often based on their racial or ethnic makeup—continue to be deprived of equitable access to environmental amenities like urban green spaces that reduce exposure to climate impacts. These neighborhoods can be as much as 12°F hotter during a heatwave than nearby wealthier neighborhoods. { 8.3 , 9.2 , 12.2 , 15.2 , 20.3 , 21.3 , 22.1 , 26.4 , 27.1 , 32.4 ; Ch. 2, Introduction }

Projected Increases in Average Annual Losses (AALs) from Floods by 2050

Harmful impacts will increase in the near term

Even if greenhouse gas emissions fall substantially, the impacts of climate change will continue to intensify over the next decade (see “Meeting US mitigation targets means reaching net-zero emissions” above; Box 1.4 ), and all US regions are already experiencing increasingly harmful impacts. Although a few US regions or sectors may experience limited or short-term benefits from climate change, adverse impacts already far outweigh any positive effects and will increasingly eclipse benefits with additional warming. { 2.3 , 19.1 ; Ch. 2, Introduction ; Chs. 21–30}

Table 1.2 shows examples of critical impacts expected to affect people in each region between now and 2030, with disproportionate effects on overburdened communities. While these examples affect particular regions in the near term, impacts often cascade through social and ecological systems and across borders and may lead to longer-term losses. { 15.2 , 18.2 , 20.1 ; Figure 15.5 ; Ch. 20, Introduction }

Region Example Impacts
Northeast } } }
Southeast } } }
US Caribbean } } , }
Midwest } } }
Northern Great Plains } , } }
Southern Great Plains , , } } , , }
Northwest , , } , , } , , }
Southwest } } , }
Alaska , } , } }
Hawai‘i and US-Affiliated Pacific Islands } , } }

Current and Future Climate Risks to the United States

Climate changes are making it harder to maintain safe homes and healthy families; reliable public services; a sustainable economy; thriving ecosystems, cultures, and traditions; and strong communities. Many of the extreme events and harmful impacts that people are already experiencing will worsen as warming increases and new risks emerge.

Safe, reliable water supplies are threatened by flooding, drought, and sea level rise

More frequent and intense heavy precipitation events are already evident, particularly in the Northeast and Midwest. Urban and agricultural environments are especially vulnerable to runoff and flooding. Between 1981 and 2016, US corn yield losses from flooding were comparable to those from extreme drought. Runoff and flooding also transport debris and contaminants that cause harmful algal blooms and pollute drinking water supplies. Communities of color and low-income communities face disproportionate flood risks. { 2.2 , 4.2 , 6.1 , 9.2 , 21.3 , 24.1 , 24.5 , 26.4 ; Figure A4.8 }

Between 1980 and 2022, drought and related heatwaves caused approximately $328 billion in damages (in 2022 dollars). Recent droughts have strained surface water and groundwater supplies, reduced agricultural productivity, and lowered water levels in major reservoirs, threatening hydropower generation. As higher temperatures increase irrigation demand, increased pumping could endanger groundwater supplies, which are already declining in many major aquifers. { 4.1, 4.2 ; Figure A4.9 }

Droughts are projected to increase in intensity, duration, and frequency, especially in the Southwest, with implications for surface water and groundwater supplies. Human and natural systems are threatened by rapid shifts between wet and dry periods that make water resources difficult to predict and manage. { 2.2 , 2.3 , 4.1 , 4.2 , 5.1 , 28.1 }

In coastal environments, dry conditions, sea level rise, and saltwater intrusion endanger groundwater aquifers and stress aquatic ecosystems. Inland, decreasing snowpack alters the volume and timing of streamflow and increases wildfire risk. Small rural water providers that often depend on a single water source or have limited capacity are especially vulnerable. { 4.2 , 7.2 , 9.2 , 21.2 , 22.1 , 23.1 , 23.3 , 25.1 , 27.4 , 28.1 , 28.2 , 28.5 , 30.1 ; Figure A4.7 }

Many options are available to protect water supplies, including reservoir optimization, nature-based solutions, and municipal management systems to conserve and reuse water. Collaboration on flood hazard management at regional scales is particularly important in areas where flood risk is increasing, as cooperation can provide solutions unavailable at local scales. { 4.3 , 9.3 , 26.5 ; Focus on Blue Carbon }

Overview Filler photo 1

Disruptions to food systems are expected to increase

As the climate changes, increased instabilities in US and global food production and distribution systems are projected to make food less available and more expensive. These price increases and disruptions are expected to disproportionately affect the nutrition and health of women, children, older adults, and low-wealth communities. { 11.2 , 15.2 }

Climate change also disproportionately harms the livelihoods and health of communities that depend on agriculture, fishing, and subsistence lifestyles, including Indigenous Peoples reliant on traditional food sources. Heat-related stress and death are significantly greater for farmworkers than for all US civilian workers. { 11.2 , 11.3 , 15.1 , 15.2 , 16.1 ; Focus on Risks to Supply Chains }

While farmers, ranchers, and fishers have always faced unpredictable weather, climate change heightens risks in many ways:

Increasing temperatures, along with changes in precipitation, reduce productivity, yield, and nutritional content of many crops. These changes can introduce disease, disrupt pollination, and result in crop failure, outweighing potential benefits of longer growing seasons and increased CO 2 fertilization. { 11.1 , 19.1 , 21.1 , 22.4 , 23.3 , 24.1 , 26.2 }

Heavy rain and more frequent storms damage crops and property and contaminate water supplies. Longer-lasting droughts and larger wildfires reduce forage production and nutritional quality, diminish water supplies, and increase heat stress on livestock. { 23.2, 25.3 , 28.3 }

Increasing water temperatures, invasive aquatic species, harmful algal blooms, and ocean acidification and deoxygenation put fisheries at risk. Fishery collapses can result in large economic losses, as well as loss of cultural identity and ways of life. { 11.3 , 29.3 }

In response, some farmers and ranchers are adopting innovations—such as agroecological practices, data-driven precision agriculture, and carbon monitoring—to improve resilience, enhance soil carbon storage, and reduce emissions. Across the Nation, Indigenous food security efforts are helping improve community resilience to climate change while also improving cultural resilience. Some types of aquaculture have the potential to increase climate-smart protein production, human nutrition, and food security, although some communities have raised concerns over issues such as conflict with traditional livelihoods and the introduction of disease or pollution. { 10.2 , 11.1 , 29.6 , 25.5 ; Boxes 22.3 , 27.2 }

Overview Filler photo 2

Homes and property are at risk from sea level rise and more intense extreme events

Homes, property, and critical infrastructure are increasingly exposed to more frequent and intense extreme events, increasing the cost of maintaining a safe and healthy place to live. Development in fire-prone areas and increases in area burned by wildfires have heightened risks of loss of life and property damage in many areas across the US. Coastal communities across the country—home to 123 million people (40% of the total US population)—are exposed to sea level rise (Figure 1.10 ), with millions of people at risk of being displaced from their homes by the end of the century. { 2.3 , 9.1 , 12.2 , 22.1 , 27.4 , 30.3 ; Figures A4.10 , A4.14 ; Focus on Western Wildfires }

People who regularly struggle to afford energy bills—such as rural, low-income, and older fixed-income households and communities of color—are especially vulnerable to more intense extreme heat events and associated health risks, particularly if they live in homes with poor insulation and inefficient cooling systems. For example, Black Americans are more likely to live in older, less energy efficient homes and face disproportionate heat-related health risks. { 5.2 , 15.2 , 15.3 , 22.2 , 26.4 , 32.4 ; Figure A4.4 }

Accessible public cooling centers can help protect people who lack adequate air-conditioning on hot days. Strategic land-use planning in cities, urban greenery, climate-smart building codes, and early warning communication can also help neighborhoods adapt. However, other options at the household scale, such as hardening homes against weather extremes or relocation, may be out of reach for renters and low-income households without assistance. { 12.3 , 15.3 , 19.3 , 22.2 }

US Flooding Risks in 2020 and 2050

Infrastructure and services are increasingly damaged and disrupted by extreme weather and sea level rise

Climate change threatens vital infrastructure that moves people and goods, powers homes and businesses, and delivers public services. Many infrastructure systems across the country are at the end of their intended useful life and are not designed to cope with additional stress from climate change. For example, extreme heat causes railways to buckle, severe storms overload drainage systems, and wildfires result in roadway obstruction and debris flows. Risks to energy, water, healthcare, transportation, telecommunications, and waste management systems will continue to rise with further climate change, with many infrastructure systems at risk of failing. { 12.2 , 13.1 , 15.2 , 23.4 , 26.5 ; Focus on Risks to Supply Chains }

In coastal areas, sea level rise threatens permanent inundation of infrastructure, including roadways, railways, ports, tunnels, and bridges; water treatment facilities and power plants; and hospitals, schools, and military bases. More intense storms also disrupt critical services like access to medical care, as seen after Hurricanes Irma and Maria in the US Virgin Islands and Puerto Rico. { 9.2 , 23.1 , 28.2 , 30.3 }

At the same time, climate change is expected to place multiple demands on infrastructure and public services. For example, higher temperatures and other effects of climate change, such as greater exposure to stormwater or wastewater, will increase demand for healthcare. Continued increases in average temperatures and more intense heatwaves will heighten electricity and water demand, while wetter storms and intensified hurricanes will strain wastewater and stormwater management systems. In the Midwest and other regions, aging energy grids are expected to be strained by disruptions and transmission efficiency losses from climate change. { 23.4 , 24.4 , 30.2 }

Forward-looking designs of infrastructure and services can help build resilience to climate change, offset costs from future damage to transportation and electrical systems, and provide other benefits, including meeting evolving standards to protect public health, safety, and welfare. Mitigation and adaptation activities are advancing from planning stages to deployment in many areas, including improved grid design and workforce training for electrification, building upgrades, and land-use choices. Grid managers are gaining experience planning and operating electricity systems with growing shares of renewable generation and working toward understanding the best approaches for dealing with the natural variability of wind and solar sources alongside increases in electrification. { 5.3 , 12.3 , 13.1 , 13.2 , 22.3 , 24.4 , 32.3 ; Figure 22.17 }

Overview Filler photo 4

Climate change exacerbates existing health challenges and creates new ones

Climate change is already harming human health across the US, and impacts are expected to worsen with continued warming. Climate change harms individuals and communities by exposing them to a range of compounding health hazards, including the following:

More severe and frequent extreme events { 2.2 , 2.3 , 15.1 }

Wider distribution of infectious and vector-borne pathogens { 15.1 , 26.1 ; Figure A4.16 }

Air quality worsened by smog, wildfire smoke, dust, and increased pollen { 14.1 , 14.2 , 14.4 , 23.1 , 26.1 }

Threats to food and water security { 11.2 , 15.1 }

Mental and spiritual health stressors { 15.1 }

While climate change can harm everyone’s health, its impacts exacerbate long-standing disparities that result in inequitable health outcomes for historically marginalized people, including people of color, Indigenous Peoples, low-income communities, and sexual and gender minorities, as well as older adults, people with disabilities or chronic diseases, outdoor workers, and children. { 14.3 , 15.2 }

The disproportionate health impacts of climate change compound with similar disparities in other health contexts. For example, climate-related disasters during the COVID-19 pandemic, such as drought along the Colorado River basin, western wildfires, and Hurricane Laura, disproportionately magnified COVID-19 exposure, transmission, and disease severity and contributed to worsened health conditions for essential workers, older adults, farmworkers, low-wealth communities, and communities of color. { 15.2 ; Focus on COVID-19 and Climate Change }

Large reductions in greenhouse gas emissions are expected to result in widespread health benefits and avoided death or illness that far outweigh the costs of mitigation actions. Improving early warning, surveillance, and communication of health threats; strengthening the resilience of healthcare systems; and supporting community-driven adaptation strategies can reduce inequities in the resources and capabilities needed to adapt as health threats from climate change continue to grow. { 14.5 , 15.3 , 26.1 , 30.2 , 32.4 }

Overview Filler photo 5

Ecosystems are undergoing transformational changes

Together with other stressors, climate change is harming the health and resilience of ecosystems, leading to reductions in biodiversity and ecosystem services. Increasing temperatures continue to shift habitat ranges as species expand into new regions or disappear from unfavorable areas, altering where people can hunt, catch, or gather economically important and traditional food sources. Degradation and extinction of local flora and fauna in vulnerable ecosystems like coral reefs and montane rainforests are expected in the near term, especially where climate changes favor invasive species or increase susceptibility to pests and pathogens. Without significant emissions reductions, rapid shifts in environmental conditions are expected to lead to irreversible ecological transformations by mid- to late century. { 2.3 , 6.2 , 7.1 , 7.2 , 8.1 , 8.2 , 10.1 , 10.2 , 21.1 , 24.2 , 27.2 , 28.5 , 29.3 , 29.5 , 30.4 ; Figure A4.12 }

Changes in ocean conditions and extreme events are already transforming coastal, aquatic, and marine ecosystems. Coral reefs are being lost due to warming and ocean acidification, harming important fisheries; coastal forests are converting to ghost forests, shrublands, and marsh due to sea level rise, reducing coastal protection; lake and stream habitats are being degraded by warming, heavy rainfall, and invasive species, leading to declines in economically important species. { 8.1 , 10.1 , 21.2 , 23.2 , 24.2 , 27.2 ; Figures 8.7 , A4.11 }

Increased risks to ecosystems are expected with further climate change and other environmental changes, such as habitat fragmentation, pollution, and overfishing. For example, mass fish die-offs from extreme summertime heat are projected to double by midcentury in northern temperate lakes under a very high scenario (RCP8.5). Continued climate changes are projected to exacerbate runoff and erosion, promote harmful algal blooms, and expand the range of invasive species. { 4.2 , 7.1 , 8.2 , 10.1 , 21.2 , 23.2 , 24.2 , 27.2 , 28.2 , 30.4 }

While adaptation options to protect fragile ecosystems may be limited, particularly under higher levels of warming, management and restoration measures can reduce stress on ecological systems and build resilience. These measures include migration assistance for vulnerable species and protection of essential habitats, such as establishing wildlife corridors or places where species can avoid heat. Opportunities for nature-based solutions that assist in mitigation exist across the US, particularly those focused on protecting existing carbon sinks and increasing carbon storage by natural ecosystems. { 8.3 , 10.3 , 23.2 , 27.2 ; Focus on Blue Carbon }

Overview Filler photo 6

Climate change slows economic growth, while climate action presents opportunities

With every additional increment of global warming, costly damages are expected to accelerate. For example, 2°F of warming is projected to cause more than twice the economic harm induced by 1°F of warming. Damages from additional warming pose significant risks to the US economy at multiple scales and can compound to dampen economic growth. { 19.1 }

International impacts can disrupt trade, amplify costs along global supply chains, and affect domestic markets. { 17.3 , 19.2 ; Focus on Risks to Supply Chains }

While some economic impacts of climate change are already being felt across the country, the impacts of future changes are projected to be more significant and apparent across the US economy. { 19.1 }

States, cities, and municipalities confront climate-driven pressures on public budgets and borrowing costs amid spending increases on healthcare and disaster relief. { 19.2 }

Household consumers face higher costs for goods and services, like groceries and health insurance premiums, as prices change to reflect both current and projected climate-related damages. { 19.2 }

Mitigation and adaptation actions present economic opportunities. Public and private measures—such as climate financial risk disclosures, carbon offset credit markets, and investments in green bonds—can avoid economic losses and improve property values, resilience, and equity. However, climate responses are not without risk. As innovation and trade open further investment opportunities in renewable energy and the country continues to transition away from fossil fuels, loss and disposal costs of stranded capital assets such as coal mines, oil and gas wells, and outdated power plants are expected. Climate solutions designed without input from affected communities can also result in increased vulnerability and cost burden. { 17.3 , 19.2 , 19.3 , 20.2 , 20.3 , 27.1 , 31.6 }

Many regional economies and livelihoods are threatened by damages to natural resources and intensifying extremes

Climate change is projected to reduce US economic output and labor productivity across many sectors, with effects differing based on local climate and the industries unique to each region. Climate-driven damages to local economies especially disrupt heritage industries (e.g., fishing traditions, trades passed down over generations, and cultural heritage–based tourism) and communities whose livelihoods depend on natural resources. { 11.3 , 19.1 , 19.3 }

As fish stocks in the Northeast move northward and to deeper waters in response to rapidly rising ocean temperatures, important fisheries like scallops, shrimp, and cod are at risk. In Alaska, climate change has already played a role in 18 major fishery disasters that were especially damaging for coastal Indigenous Peoples, subsistence fishers, and rural communities. { 10.2 , 21.2 , 29.3 }

While the Southeast and US Caribbean face high costs from projected labor losses and heat health risks to outdoor workers, small businesses are already confronting higher costs of goods and services and potential closures as they struggle to recover from the effects of compounding extreme weather events. { 22.3 , 23.1 }

Agricultural losses in the Midwest, including lower corn yields and damages to specialty crops like apples, are linked to rapid shifts between wet and dry conditions and stresses from climate-induced increases in pests and pathogens. Extreme heat and more intense wildfire and drought in the Southwest are already threatening agricultural worker health, reducing cattle production, and damaging wineries. { 24.1 , 28.5 }

In the Northern Great Plains, agriculture and recreation are expected to see primarily negative effects related to changing temperature and rainfall patterns. By 2070, the Southern Great Plains is expected to lose cropland acreage as lands transition to pasture or grassland. { 25.3 , 26.2 }

Outdoor-dependent industries, such as tourism in Hawai‘i and the US-Affiliated Pacific Islands and skiing in the Northwest, face significant economic loss from projected rises in park closures and reductions in workforce as continued warming leads to deterioration of coastal ecosystems and shorter winter seasons with less snowfall. { 7.2 , 8.3 , 10.1 , 10.3 , 19.1 , 27.3 , 30.4 }

Mitigation and adaptation actions taken by businesses and industries promote resilience and offer long-term benefits to employers, employees, and surrounding communities. For example, as commercial fisheries adapt, diversifying harvest and livelihoods can help stabilize income or buffer risk. In addition, regulators and investors are increasingly requiring businesses to disclose climate risks and management strategies. { 10.2 , 19.3 , 26.2 }

Overview Filler photo 7

Job opportunities are shifting due to climate change and climate action

Many US households are already feeling the economic impacts of climate change. Climate change is projected to impose a variety of new or higher costs on most households as healthcare, food, insurance, building, and repair costs become more expensive. Compounding climate stressors can increase segregation, income inequality, and reliance on social safety net programs. Quality of life is also threatened by climate change in ways that can be more difficult to quantify, such as increased crime and domestic violence, harm to mental health, reduced happiness, and fewer opportunities for outdoor recreation and play. { 11.3 , 19.1, 19.3 }

Climate change, and how the country responds, is expected to alter demand for workers and shift where jobs are available. For example, energy-related livelihoods in the Northern and Southern Great Plains are expected to shift as the energy sector transforms toward more renewables, low-carbon technologies, and electrification of more sectors of the economy. Losses in fossil fuel–related jobs are projected to be completely offset by greater increases in mitigation-related jobs, as increased demand for renewable energy and low-carbon technologies is expected to lead to long-term expansion in most states’ energy and decarbonization workforce (Figure 1.12 ). Grid expansion and energy efficiency efforts are already creating new jobs in places like Nevada, Vermont, and Alaska, and advancements in biofuels and agrivoltaics (combined renewable energy and agriculture) provide economic opportunities in rural communities. { 10.2 , 11.3 , 19.3 , 25.3 , 26.2 , 29.3 , 32.4 }

Additional opportunities include jobs in ecosystem restoration and construction of energy-efficient and climate-resilient housing and infrastructure. Workforce training and equitable access to clean energy jobs, which have tended to exclude women and people of color, are essential elements of a just transition to a decarbonized economy. { 5.3 , 19.3 , 20.3 , 22.3 , 25.3 , 26.2 , 27.3 , 32.4 }

Energy Employment (2020–2050) for Alternative Net-Zero Pathways

Climate change is disrupting cultures, heritages, and traditions

As climate change transforms US landscapes and ecosystems, many deeply rooted community ties, pastimes, Traditional Knowledges, and cultural or spiritual connections to place are at risk. Cultural heritage—including buildings, monuments, livelihoods, and practices—is threatened by impacts on natural ecosystems and the built environment. Damages to archaeological, cultural, and historical sites further reduce opportunities to transfer important knowledge and identity to future generations. { 6.1 , 7.2 , 8.3 , 9.2 , 10.1 , 12.2 , 16.1 , 22.1 , 23.1 , 26.1 , 27.6 , 28.2 ; Introductions in Chs. 10 , 30 }

Many outdoor activities and traditions are already being affected by climate change, with overall impacts projected to further hinder recreation, cultural practices, and the ability of communities to maintain local heritage and a sense of place. { 19.1 }

For example:

The prevalence of invasive species and harmful algal blooms is increasing as waters warm, threatening activities like swimming along Southeast beaches, boating and fishing for walleye in the Great Lakes, and viewing whooping cranes along the Gulf Coast. In the Northwest, water-based recreation demand is expected to increase in spring and summer months, but reduced water quality and harmful algal blooms are expected to restrict these opportunities. { 24.2 , 24.5 , 26.3 , 27.6 }

Ranges of culturally important species are shifting as temperatures warm, making them harder to find in areas where Indigenous Peoples have access (see Box 1.3 ). { 11.2 , 24.2 , 26.1 }

Hikers, campers, athletes, and spectators face increasing threats from more severe heatwaves, wildfires, and floods and greater exposure to infectious disease. { 22.2 , 15.1 , 26.3 , 27.6 }

Nature-based solutions and ecosystem restoration can preserve cultural heritage while also providing valuable local benefits, such as flood protection and new recreational opportunities. Cultural heritage can also play a key role in climate solutions, as incorporating local values, Indigenous Knowledge, and equity into design and planning can help reaffirm a community’s connection to place, strengthen social networks, and build new traditions. { 7.3 , 26.1 , 26.3 , 30.5 }

Overview Filler photo 9

The Choices That Will Determine the Future

With each additional increment of warming, the consequences of climate change increase. The faster and further the world cuts greenhouse gas emissions, the more future warming will be avoided, increasing the chances of limiting or avoiding harmful impacts to current and future generations.

Societal choices drive greenhouse gas emissions

The choices people make on a day-to-day basis—how to power homes and businesses, get around, and produce and use food and other goods—collectively determine the amount of greenhouse gases emitted. Human use of fossil fuels for transportation and energy generation, along with activities like manufacturing and agriculture, has increased atmospheric levels of carbon dioxide (CO 2 ) and other heat-trapping greenhouse gases. Since 1850, CO 2 concentrations have increased by almost 50%, methane by more than 156%, and nitrous oxide by 23%, resulting in long-term global warming. { 2.1 , 3.1 ; Ch. 2, Introduction }

The CO 2 not removed from the atmosphere by natural sinks lingers for thousands of years. This means that CO 2 emitted long ago continues to contribute to climate change today. Because of historical trends, cumulative CO 2 emissions from fossil fuels and industry in the US are higher than from any other country. To understand the total contributions of past actions to observed climate change, additional warming from CO 2 emissions from land use, land-use change, and forestry, as well as emissions of nitrous oxide and the shorter-lived greenhouse gas methane, should also be taken into account. Accounting for all of these factors and emissions from 1850–2021, emissions from the US are estimated to comprise approximately 17% of current global warming. { 2.1 }

Carbon dioxide, along with other greenhouse gases like methane and nitrous oxide, is well-mixed in the atmosphere. This means these gases warm the planet regardless of where they were emitted. For the first half of the 20th century, the vast majority of greenhouse gas emissions came from the US and Europe. But as US and European emissions have been falling (US emissions in 2021 were 17% lower than 2005 levels), emissions from the rest of the world, particularly Asia, have been rising rapidly. The choices the US and other countries make now will determine the trajectory of climate change and associated impacts for many generations to come (Figure 1.13 ). { 2.1 , 2.3 ; Ch. 32 }

Rising global emissions are driving global warming, with faster warming in the US

The observed global warming of about 2°F (1.1°C) over the industrial era is unequivocally caused by greenhouse gas emissions from human activities, with only very small effects from natural sources. About three-quarters of total emissions and warming (1.7°F [0.95°C]) have occurred since 1970. Warming would have been even greater without the land and ocean carbon sinks, which have absorbed more than half of the CO 2 emitted by humans. { 2.1 , 3.1 , 7.2 ; Ch. 2, Introduction ; Figures 3.1 , 3.8 }

The US is warming faster than the global average, reflecting a broader global pattern: land areas are warming faster than the ocean, and higher latitudes are warming faster than lower latitudes. Additional global warming is expected to lead to even greater warming in some US regions, particularly Alaska (Figure 1.14 ). { 2.1 , 3.4 ; Ch. 2, Introduction ; App. 4 }

Regional Changes in Climate Compared to Present-Day Conditions

Warming increases risks to the US

Rising temperatures lead to many large-scale changes in Earth’s climate system, and the consequences increase with warming (Figure 1.15 ). Some of these changes can be further amplified through feedback processes at higher levels of warming, increasing the risk of potentially catastrophic outcomes. For example, uncertainty in the stability of ice sheets at high warming levels means that increases in sea level along the continental US of 3–7 feet by 2100 and 5–12 feet by 2150 are distinct possibilities that cannot be ruled out. The chance of reaching the upper end of these ranges increases as more warming occurs. In addition to warming more, the Earth warms faster in high and very high scenarios (SSP3-7.0 and SSP5-8.5, respectively), making adaptation more challenging. { 2.3 , 3.1 , 3.4 , 9.1 }

Consequences Are Greater at Higher Global Warming Levels

How Climate Action Can Create a More Resilient and Just Nation

Large near-term cuts in greenhouse gas emissions are achievable through many currently available and cost-effective mitigation options. However, reaching net-zero emissions by midcentury cannot be achieved without exploring additional mitigation options. Even if the world decarbonizes rapidly, the Nation will continue to face climate impacts and risks. Adequately and equitably addressing these risks involves longer-term inclusive planning, investments in transformative adaptation, and mitigation approaches that consider equity and justice.

Available mitigation strategies can deliver substantial emissions reductions, but additional options are needed to reach net zero

Limiting global temperature change to well below 2°C (3.6°F) requires reaching net-zero CO 2 emissions globally by 2050 and net-zero emissions of all greenhouse gases from human activities within the following few decades (see “Meeting US mitigation targets means reaching net-zero emissions” above). Net-zero emissions pathways involve widespread implementation of currently available and cost-effective options for reducing emissions alongside rapid expansion of technologies and methods to remove carbon from the atmosphere to balance remaining emissions. However, to reach net-zero emissions, additional mitigation options need to be explored (Figure 1.16 ). Pathways to net zero involve large-scale technological, infrastructure, land-use, and behavioral changes and shifts in governance structures. { 5.3 , 6.3 , 9.2 , 9.3 , 10.4 , 13.2 , 16.2 , 18.4 , 20.1 , 24.1 , 25.5 , 30.5 , 32.2 , 32.3 ; Focus on Blue Carbon }

Scenarios that reach net-zero emissions include some of the following key options:

Decarbonizing the electricity sector, primarily through expansion of wind and solar energy, supported by energy storage { 32.2 }

Transitioning to transportation and heating systems that use zero-carbon electricity or low-carbon fuels, such as hydrogen { 5.3 , 13.1 , 32.2 , 32.3 }

Improving energy efficiency in buildings, appliances, and light- and heavy-duty vehicles and other transportation modes { 5.3 , 13.3 , 32.2 }

Implementing urban planning and building design that reduces energy demands through more public transportation and active transportation and lower cooling demands for buildings { 12.3 , 13.1 , 32.2 }

Increasing the efficiency and sustainability of food production, distribution, and consumption { 11.1 , 32.2 }

Improving land management to decrease greenhouse gas emissions and increase carbon removal and storage, with options ranging from afforestation, reforestation, and restoring coastal ecosystems to industrial processes that directly capture and store carbon from the air { 5.3 , 6.3 , 8.3 , 32.2 , 32.3 ; Focus on Blue Carbon }

Portfolio of Mitigation Options for Achieving Net Zero by 2050

Due to large declines in technology and deployment costs over the last decade (Figure 1.2 ), decarbonizing the electricity sector is expected to be largely driven by rapid growth in renewable energy. Recent legislation is also expected to increase deployment rates of low- and zero-carbon technology. To reach net-zero targets, the US will need to add new electricity-generating capacity, mostly wind and solar, faster than ever before. This infrastructure expansion may drastically increase demand for products (batteries, solar photovoltaics) and resources, such as metals and critical minerals. Near-term shortages in minerals and metals due to increased demand can be addressed by increased recycling, for example, which can also reduce dependence on imported materials. { 5.2, 5.3 , 17.2 , 25.3 , 32.2 , 32.4 ; Focus on Risks to Supply Chains }

Most US net-zero scenarios require CO 2 removal from the atmosphere to balance residual emissions, particularly from sectors where decarbonization is difficult. In these scenarios, nuclear and hydropower capacity are maintained but not greatly expanded; natural gas–fired generation declines, but more slowly if coupled with carbon capture and storage. { 32.2 }

Nature-based solutions that restore degraded ecosystems and preserve or enhance carbon storage in natural systems like forests, oceans, and wetlands, as well as agricultural lands, are cost-effective mitigation strategies. For example, with conservation and restoration, marine and coastal ecosystems could capture and store enough atmospheric carbon each year to offset about 3% of global emissions (based on 2019 and 2020 emissions). Many nature-based solutions can provide additional benefits, like improved ecosystem resilience, food production, improved water quality, and recreational opportunities. { 8.3 ; Boxes 7.2 , 32.2 ; Focus on Blue Carbon }

Adequately addressing climate risks involves transformative adaptation

While adaptation planning and implementation has advanced in the US, most adaptation actions to date have been incremental and small in scale (see Table 1.3 ). In many cases, more transformative adaptation will be necessary to adequately address the risks of current and future climate change. { 31.1 , 31.3 }.

Examples of incremental adaptation Examples of transformative adaptation
Using air-conditioning during heatwaves Redesigning cities and buildings to address heat
Reducing water consumption during droughts Shifting water-intensive industry to match projected rainfall patterns
Elevating homes above flood waters Directing new housing development to less flood-prone areas

Transformative adaptation involves fundamental shifts in systems, values, and practices, including assessing potential trade-offs, intentionally integrating equity into adaptation processes, and making systemic changes to institutions and norms. While barriers to adaptation remain, many of these can be overcome with financial, cultural, technological, legislative, or institutional changes. { 31.1 , 31.2 , 31.3 }.

Adaptation planning can more effectively reduce climate risk when it identifies not only disparities in how people are affected by climate change but also the underlying causes of climate vulnerability. Transformative adaptation would involve consideration of both the physical and social drivers of vulnerability and how they interact to shape local experiences of vulnerability and disparities in risk. Examples include understanding how differing levels of access to disaster assistance constrain recovery outcomes or how disaster damage exacerbates long-term wealth inequality. Effective adaptation, both incremental and transformative, involves developing and investing in new monitoring and evaluation methods to understand the different values of, and impacts on, diverse individuals and communities. { 9.3 , 19.3 , 31.2 , 31.3 , 31.5 }

Transformative adaptation would require new and better-coordinated governance mechanisms and cooperation across all levels of government, the private sector, and society. A coordinated, systems-based approach can support consideration of risks that cut across multiple sectors and scales, as well as the development of context-specific adaptations. For example, California, Florida, and other states have used informal regional collaborations to develop adaptation strategies tailored to their area. Adaptation measures that are designed and implemented using inclusive, participatory planning approaches and leverage coordinated governance and financing have the greatest potential for long-term benefits, such as improved quality of life and increased economic productivity. { 10.3 , 18.4 , 20.2 , 31.4 }

Mitigation and adaptation actions can result in systemic, cascading benefits

Actions taken now to accelerate net emissions reductions and adapt to ongoing changes can reduce risks to current and future generations. Mitigation and adaptation actions, from international to individual scales, can also result in a range of benefits beyond limiting harmful climate impacts, including some immediate benefits (Figure 1.1 ). The benefits of mitigation and proactive adaptation investments are expected to outweigh the costs. { 2.3 , 13.3 , 14.5 , 15.3 , 17.4 , 22.1 , 31.6 , 32.4 ; Introductions in Chs. 17 , 31 }

Accelerating the deployment of low-carbon technologies, expanding renewable energy, and improving building efficiency can have significant near-term social and economic benefits like reducing energy costs and creating jobs. { 32.4 }

Transitioning to a carbon-free, sustainable, and resilient transportation system can lead to improvements in air quality, fewer traffic fatalities, lower costs to travelers, improved mental and physical health, and healthier ecosystems. { 13.3 }

Reducing emissions of short-lived climate pollutants like methane, black carbon, and ozone provides immediate air quality benefits that save lives and decrease the burden on healthcare systems while also slowing near-term warming. { 11.1 , 14.5 , 15.3 }

Green infrastructure and nature-based solutions that accelerate pathways to net-zero emissions through restoration and protection of ecological resources can improve water quality, strengthen biodiversity, provide protection from climate hazards like heat extremes or flooding, preserve cultural heritage and traditions, and support more equitable access to environmental amenities. { 8.3 , 15.3 , 20.3 , 24.4 , 30.4 ; Focus on Blue Carbon }

Strategic planning and investment in resilience can reduce the economic impacts of climate change, including costs to households and businesses, risks to markets and supply chains, and potential negative impacts on employment and income, while also providing opportunities for economic gain. { 9.2 , 19.3 , 26.2 , 31.6 ; Focus on Risks to Supply Chains }

Improving cropland management and climate-smart agricultural practices can strengthen the resilience and profitability of farms while also increasing soil carbon uptake and storage, reducing emissions of nitrous oxide and methane, and enhancing agricultural efficiency and yields. { 11.1 , 24.1 , 32.2 }

Climate actions that incorporate inclusive and sustained engagement with overburdened and underserved communities in the design, planning, and implementation of evidence-based strategies can also reduce existing disparities and address social injustices. { 24.3 , 31.2 , 32.4 }

Transformative climate actions can strengthen resilience and advance equity

Fossil fuel–based energy systems have resulted in disproportionate public health burdens on communities of color and/or low-income communities. These same communities are also disproportionately harmed by climate change impacts. { 13.4 , 15.2 , 32.4 }

A “just transition” is the process of responding to climate change with transformative actions that address the root causes of climate vulnerability while ensuring equitable access to jobs; affordable, low-carbon energy; environmental benefits such as reduced air pollution; and quality of life for all. This involves reducing impacts to overburdened communities, increasing resources to underserved communities, and integrating diverse worldviews, cultures, experiences, and capacities into mitigation and adaptation actions. As the country shifts to low-carbon energy industries, a just transition would include job creation and training for displaced fossil fuel workers and addressing existing racial and gender disparities in energy workforces. For example, Colorado agencies are creating plans to guide the state’s transition away from coal, with a focus on economic diversification, job creation, and workforce training for former coal workers. The state’s plan also acknowledges a commitment to communities disproportionately impacted by coal power pollution. { 5.3 , 13.4 , 14.3 , 15.2 , 16.2 , 20.3 , 31.2 , 32.4 ; Figure 20.1 }

A just transition would take into account key aspects of environmental justice:

Recognizing that certain people have borne disparate burdens related to current and historical social injustices and, thus, may have different needs

Ensuring that people interested in and affected by outcomes of decision-making processes are included in those procedures through fair and meaningful engagement

Distributing resources and opportunities over time, including access to data and information, so that no single group or set of individuals receives disproportionate benefits or burdens

{ 20.3 ; Figure 20.1 }

An equitable and sustainable US response to climate change has the potential to reduce climate impacts while improving well-being, strengthening resilience, benefiting the economy, and, in part, redressing legacies of racism and injustice. Transformative adaptation and the transition to a net-zero energy system come with challenges and trade-offs that would need to be considered to avoid exacerbating or creating new social injustices. For example, transforming car-centric transportation systems to emphasize public transit and walkability could increase accessibility for underserved communities and people with limited mobility—if user input and equity are intentionally considered. { 13.4 , 20.3 , 31.3 , 32.4 ; Ch. 31, Introduction }

Equitable responses that assess trade-offs strengthen community resilience and self-determination, often fostering innovative solutions. Engaging communities in identifying challenges and bringing together diverse voices to participate in decision-making allows for more inclusive, effective, and transparent planning processes that account for the structural factors contributing to inequitable climate vulnerability. { 9.3 , 12.4 , 13.4 , 20.2 , 31.4 }

Cover image

Two volunteers help demonstrate and install solar panels in Highland Park, Michigan, in May 2021. The event was hosted by the local nonprofit Soulardarity, which teaches local residents about solar power, installs solar-powered streetlights that also provide wireless internet access, and helps local communities build a just and equitable energy system. Adopting energy storage with decentralized solutions, such as microgrids or off-grid systems, can promote energy equity in overburdened communities. Photo credit: Nick Hagen.

Virtually Certain Very Likely Likely As Likely as Not Unlikely Very Unikely Exceptionally Unlikely
99%–100% 90%–100% 66%–100% 33%–66% 0%–33% 0%–10% 0%–1%

Confidence Level

Very High High Medium Low

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

  • In Response to Climate Change, Citizens in Advanced Economies Are Willing To Alter How They Live and Work

Many doubt success of international efforts to reduce global warming

Table of contents.

  • Acknowledgments
  • Methodology

Photo showing mud-covered cars stand piled up near Bad Neuenahr-Ahrweiler in western Germany on July 22, days after deadly floods caused major damage in the region. (Christof Stache/AFP via Getty Images)

This analysis focuses on attitudes toward global climate change around the world. For this report, we conducted nationally representative Pew Research Center surveys of 16,254 adults from March 12 to May 26, 2021, in 16 advanced economies. All surveys were conducted over the phone with adults in Canada, Belgium, France, Germany, Greece, Italy, the Netherlands, Spain, Sweden, the UK, Australia, Japan, New Zealand, Singapore, South Korea and Taiwan.

In the United States, we surveyed 2,596 U.S. adults from Feb. 1 to 7, 2021. Everyone who took part in the U.S. survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories.

This study was conducted in countries where nationally representative telephone surveys are feasible. Due to the coronavirus outbreak, face-to-face interviewing is not currently possible in many parts of the world.

Here are the questions used for the report, along with responses. See our methodology database for more information about the survey methods outside the U.S. For respondents in the U.S., read more about the ATP’s methodology .

A new Pew Research Center survey in 17 advanced economies spanning North America, Europe and the Asia-Pacific region finds widespread concern about the personal impact of global climate change. Most citizens say they are willing to change how they live and work at least some to combat the effects of global warming, but whether their efforts will make an impact is unclear.

People across world greatly concerned about climate change and willing to make  sacrifices to address it, but there is less confidence in efforts to solve the problem

Citizens offer mixed reviews of how their societies have responded to climate change, and many question the efficacy of international efforts to stave off a global environmental crisis.

Conducted this past spring, before the summer season ushered in new wildfires , droughts , floods and stronger-than-usual storms , the study reveals a growing sense of personal threat from climate change among many of the publics polled. In Germany, for instance, the share that is “very concerned” about the personal ramifications of global warming has increased 19 percentage points since 2015 (from 18% to 37%).

Intense concern about the personal effects of climate change has increased sharply in several major economies since 2015

In the study, only Japan (-8 points) saw a significant decline in the share of citizens deeply concerned about climate change. In the United States, views did not change significantly since 2015.

Younger adults tend to be more concerned than older counterparts that climate change will harm them

Young adults, who have been at the forefront of some of the most prominent climate change protests in recent years, are more concerned than their older counterparts about the personal impact of a warming planet in many publics surveyed. The widest age gap is found in Sweden, where 65% of 18- to 29-year-olds are at least somewhat concerned about the personal impacts of climate change in their lifetime, compared with just 25% of those 65 and older. Sizable age differences are also found in New Zealand, Australia, the U.S., France and Canada.

Public concern about climate change appears alongside a willingness to reduce its effects by taking personal steps. Majorities in each of the advanced economies surveyed say they are willing to make at least some changes in how they live and work to address the threat posed by global warming. And across all 17 publics polled, a median of 34% are willing to consider “a lot of changes” to daily life as a response to climate change.

Ideological left is more willing to adjust lifestyle in response to climate change

Generally, those on the left of the political spectrum are more open than those on the right to taking personal steps to help reduce the effects of climate change. This is particularly true in the U.S., where citizens who identify with the ideological left are more than twice as willing as those on the ideological right (94% vs. 45%) to modify how they live and work for this reason. Other countries where those on the left and right are divided over whether to alter their lives and work in response to global warming include Canada, the Netherlands, Australia and Germany.

Beyond individual actions, the study reveals mixed views on the broader, collective response to climate change. In 12 of the 17 publics polled, half or more think their own society has done a good job dealing with global climate change. But only in Singapore (32%), Sweden (14%), Germany (14%), New Zealand (14%) and the United Kingdom (13%) do more than one-in-ten describe such efforts as “very good.” Meanwhile, fewer than half in Japan (49%), Italy (48%), the U.S. (47%), South Korea (46%) and Taiwan (45%) give their society’s climate response favorable marks.

Abroad, the U.S. response to climate change is generally seen as wanting. Among the 16 other advanced economies surveyed, only Singaporeans are slightly positive in their assessment of American efforts (53% say the U.S. is doing a “good job” of addressing climate change). Elsewhere judgments are harsher, with six-in-ten or more across Australia, New Zealand and many of the European publics polled saying the U.S. is doing a “bad job” of dealing with global warming. However, China fares substantially worse in terms of international public opinion: A median of 78% across 17 publics describe China’s handling of climate change as “bad,” including 45% who describe the Chinese response as “very bad.” That compares with a cumulative median of 61% who judge the American response as “bad.”

Internationally, EU, UN climate response earns mostly high praise, while U.S. and China get poor marks

At the cross-national level, the European Union’s response to climate change is viewed favorably by majorities in each of the advanced economies surveyed, except Germany where opinion is split (49% good job; 47% bad job). However, there is still room for improvement, as only a median of 7% across the publics polled describe the EU’s efforts as “very good.” The United Nations’ actions to address global warming are also generally seen in a favorable light: A median of 56% say the multilateral organization is doing a good job. But again, the reviews are tempered, with just 5% describing the UN’s response to climate change as “very good.”

Publics in the advanced economies surveyed are divided as to whether actions by the international community can successfully reduce the effects of global warming. Overall, a median of 52% lack confidence that a multilateral response will succeed, compared with 46% who remain optimistic that nations can respond to the impact of climate change by working together. Skepticism of multilateral efforts is most pronounced in France (65%), Sweden (61%) and Belgium (60%), while optimism is most robust in South Korea (68%) and Singapore (66%).

These are among the findings of a new Pew Research Center survey, conducted from Feb. 1 to May 26, 2021, among 18,850 adults in 17 advanced economies.

People concerned climate change will harm them during their lifetimes

Many are concerned climate change will personally harm them during their lifetimes

Many people across 17 advanced economies are concerned that global climate change will harm them personally at some point in their lifetime. A median of 72% express at least some concern that they will be personally harmed by climate change in their lifetimes, compared with medians of 19% and 11% who say they are not too or not at all concerned, respectively. The share who say they are very concerned climate change will harm them personally ranges from 15% in Sweden to 57% in Greece.

Roughly two-thirds of Canadians and six-in-ten Americans are worried climate change will harm them in their lifetimes. Only 12% of Canadians and 17% of Americans are not at all concerned about the personal impact of global climate change.

Publics in Europe express various degrees of concern for potential harm caused by climate change. Three-quarters or more of those in Greece, Spain, Italy, France and Germany say they are concerned that climate change will harm them at some point during their lives. Only in Sweden does less than a majority of adults express concern about climate change harming them. Indeed, 56% of Swedes are not concerned about personal harm related to climate change.

In general, Asia-Pacific publics express more worry about climate change causing them personal harm than not. The shares who express concern range from 64% in Australia to 88% in South Korea. About one-third or more in South Korea, Singapore and Australia say they are very concerned climate change will harm them personally.

Rising concern that climate change will cause personal harm

The share who are very concerned climate change will harm them personally at some point during their lives has increased significantly since 2015 in nearly every country where trend data is available. In Germany, for example, the share who say they are very concerned has increased 19 percentage points over the past six years. Double-digit changes are also present in the UK (+18 points), Australia (+16), South Korea (+13) and Spain (+10). The only public where concern for the harm from climate change has decreased significantly since 2015 is Japan (-8 points).

While many worry climate change will harm them personally in the future, there is widespread sentiment that climate change is already affecting the world around them. In Pew Research Center surveys conducted in 2019 and 2020, a median of 70% across 20 publics surveyed said climate change is affecting where they live a great deal or some amount. And majorities in most countries included as part of a 26-nation survey in 2018 thought global climate change was a major threat to their own country (the same was true across all 14 countries surveyed in 2020 ).

Those on ideological left are more likely to be concerned about personal harm of climate change than those on the right

Those who place themselves on the left of the ideological spectrum are more likely than those who place themselves on the right to be concerned global climate change will harm them personally during their lifetime. This pattern is present across all 14 nations where ideology is measured. In 10 of these 14, though, majorities across the ideological left, center and right are concerned climate change will harm them personally.

The difference is starkest in the U.S.: Liberals are 59 percentage points more likely than conservatives to express concern for this possibility (87% vs. 28%, respectively). However, large ideological differences are also present in Australia (with liberals 41 points more likely to say this), the Netherlands (+35), Canada (+30), Sweden (+30) and New Zealand (+23).

Women are more concerned about the harm of climate change than men in many advanced economies

Women are more concerned than men that climate change will harm them personally in many of the publics polled. In Germany, women are 13 points more likely than men to be concerned that climate change will cause them harm (82% vs 69%, respectively). Double-digit differences are also present across several publics, including the U.S., Sweden, the UK, South Korea, Singapore, Taiwan, Australia and the Netherlands.

When this question was first asked in 2015 , women were also more likely to express concern than their male counterparts that climate change will harm them in the U.S., Germany, Canada, Japan, Spain and Australia.

Young people have been at the forefront of past protests seeking government action on climate change. In eight places surveyed, young adults ages 18 to 29 are more likely than those 65 and older to be concerned climate change will harm them during their lifetime. The difference is greatest in Sweden, home of youth climate activist Greta Thunberg . Young Swedes are 40 points more likely than their older counterparts to say they are concerned about harm from climate change. Large age gaps are also present in New Zealand (with younger adults 31 points more likely to say this), Australia (+30) and Singapore (+20). And young Americans, French, Canadians and Brits are also more likely to say that climate change will personally harm them in their lifetimes.

While large majorities across every age group in Greece and South Korea are concerned climate change will harm them personally, those ages 65 and older are more likely to hold this sentiment than those younger than 30.

Many across the world willing to change how they live and work to reduce effects of climate change

Most people in publics surveyed are willing to make at least some changes to their lives to help reduce the effects of climate change

Many across the publics surveyed say they are willing to make at least some changes to the way they live and work to reduce the effects of climate change. A median of 80% across 17 publics say they would make at least some changes to their lives to reduce the effects of climate change, compared with a median of 19% who say they would make a few changes or no changes at all. The share willing to make a lot of changes ranges from 8% in Japan to 62% in Greece.

In North America, about three-quarters or more of both Canadians and Americans say they are willing to make changes to reduce the effects of climate change.

Large majorities across each of the European publics surveyed say they are willing to change personal behavior to address climate change, but the share who say they are willing to make a lot of changes varies considerably. About half or more in Greece, Italy and Spain say they would make a lot of changes, while fewer than a third in Belgium, Germany and the Netherlands say the same.

Young adults are more likely than older adults in some countries to be willing to make lifestyle changes to help reduce the effects of climate change

Majorities in each of the Asia-Pacific publics polled say they would make some or a lot of changes to how they live and work to combat the effects of climate change, including more than three-quarters in South Korea, Singapore, Australia and New Zealand. But in Japan, fully 44% say they are willing to make few or no changes to how they live and work to address climate change, the largest share of any public surveyed.

In eight countries surveyed, those ages 18 to 29 are more likely than those 65 and older to say they are willing to make at least some changes to how they live and work to help reduce the effects of climate change. In France, for example, about nine-in-ten of those younger than 30 are willing to make changes in response to climate change, compared with 62% of those 65 and older.

Willingness to change behavior to reduce effects of climate change is tied to education

Ideologically, those on the left are more likely than those on the right to express willingness to change their behavior to help reduce the effects of global climate change. The ideological divide is widest in the U.S., where 94% of liberals say they are willing to make at least some changes to how they live and work to help reduce the effects of climate change, compared with 45% of conservatives. Large ideological differences are also present between those on the left and the right in Canada (a difference of 26 percentage points), the Netherlands (25 points), Australia (23 points) and Germany (22 points).

In most publics, those with more education are more likely than those with less education to say they are willing to adjust their lifestyles in response to the impact of climate change. 1 In Belgium, for example, those with a postsecondary degree or higher are 14 points more likely than those with a secondary education or below to say they are willing to make changes to the way they live. Double-digit differences are also present between those with more education and less education in France, Germany, New Zealand, the Netherlands and Australia.

And in most places surveyed, those with a higher-than-median income are more likely than those with a lower income to express willingness to make at least some changes to reduce the effects of climate change. For example, in Belgium, about three-quarters (76%) of those with a higher income say they would make changes to their lives, compared with 66% of those with a lower income.

Many are generally positive about how their society is handling climate change

Majorities in Europe confident in own public’s response to climate change

Respondents give mostly positive responses when asked to reflect on how their own society is handling climate change. Around half or more in most places say they their society is doing at least a somewhat good job, with a median of 56% saying this across the 17 advanced economies.

Roughly two-thirds (64%) of Canadians say their country is doing a good job, while nearly half of Americans say the same.

In most of the European publics surveyed, majorities believe their nation’s climate change response is at least somewhat good. Those in Sweden and the UK are especially optimistic, with around seven-in-ten saying their society is doing a good job dealing with climate change. In Europe, Italians are the most critical of their country’s performance: 20% say their society is doing a very bad job, the largest share among all publics surveyed.

Ideological divides in evaluation of climate change handling

Around eight-in-ten in Singapore and New Zealand say their publics are doing a good job – the highest levels among all societies surveyed. This includes around a third (32%) in Singapore who say they are doing a very good job. Adults in the other Asia-Pacific publics surveyed are more circumspect; about half or fewer say their society is doing a good job.

Political ideology plays a role in how people evaluate their own public’s handling of climate change. For adults in 10 countries, those on the right tend to rate their country’s performance with regard to climate change more positively. The difference is most stark in Australia: 69% of those on the right say Australia is handling climate change well, compared with just 19% of those on the left – a 50-point difference. A striking difference also appears in the U.S., where conservatives are 41 points more likely than liberals to say the U.S. is doing a good job dealing with climate change.

Evaluations are also tied to how people view governing parties. In 10 of 17 publics surveyed, people who see the governing party positively are more likely than those with a negative view of the party to think climate change is being handled well. The opposite is true in the U.S., where only 33% of Democrats and Democratic-leaning independents say the U.S. is handling climate change well, compared with 61% of those who do not support the Democratic Party.

Mixed views on whether action by the international community can reduce the effects of climate change

Doubts that international community can reduce effects of climate change are common but not ubiquitous

Only a median of 46% across the publics polled are confident that actions taken by the international community will significantly reduce the effects of climate change. A median of 52% are not confident these actions will reduce the effects of climate change.

Canadians are generally divided on whether international climate action can reduce the impact of climate change. And 54% of Americans are not confident in the international community’s response to the climate crisis.

In Europe, majorities in Germany and the Netherlands express confidence that international climate action can significantly address climate change. However, majorities in France, Sweden, Belgium and Italy are not confident in climate actions taken by the international community.

South Koreans and Singaporeans say they are confident in international climate action, but elsewhere in the Asia-Pacific region, public opinion is either divided or leans toward pessimism about international efforts.

Those with a favorable view of UN  more likely to have confidence in international climate change action

Opinion of international organizations, like the United Nations, is linked to confidence that actions taken by the international community will significantly reduce the effects of global climate change. Those with a favorable view of the UN are more confident that actions taken by the international community will significantly reduce the effects of climate change than those with an unfavorable view of the UN. This difference is largest in the U.S., where 61% with a favorable view of the UN say international action will reduce the effects of climate change, compared with just 22% of those with an unfavorable view of the organization. Double-digit differences are present in every public polled.

Similarly, in every EU member state included in the survey, those with favorable views of the bloc are more likely to have confidence in international efforts to combat climate change than those with unfavorable views.

Little consensus on whether international climate action will harm or benefit domestic economies

Publics are divided over the economic impact of international actions to address global climate change

Relatively few in the advanced economies surveyed think actions taken by the international community to address climate change, such as the Paris climate agreement, will mostly benefit or harm their own economy. A median of 31% across 17 publics say these actions will be good for their economy, while a median of 24% believe such actions will mostly harm their economy. A median of 39% say actions like the Paris climate agreement will have no economic impact.

In Sweden, about half (51%) feel international climate actions will mostly benefit their economy. On the other hand, only 18% in France say their public will benefit economically from international climate agreements.

In no public do more than a third say international action on climate change will harm their economy. But in the U.S., which pulled out of the Paris climate agreement under former President Donald Trump and has just recently rejoined the accord under President Joe Biden, a third say international climate agreements will harm the economy. (For more on how international publics view Biden’s international policy actions, see “ America’s Image Abroad Rebounds With Transition From Trump to Biden .”)

The more widespread sentiment among those surveyed is that climate actions will have no impact on domestic economies. In eight publics, four-in-ten or more hold this opinion, including half in France. And in two places – Japan and Taiwan – one-in-five or more offer no opinion.

Left-leaning adults are generally more likely than those on right to see climate change efforts as boon to economy

Those on the left of the ideological spectrum are more likely than those on the right to say international action to address climate change – such as the Paris Agreement – will mostly benefit their economies. U.S. respondents are particularly divided by ideology. Roughly half (53%) of liberals feel international actions related to climate change will benefit the U.S. economy, compared with just 12% of conservatives. The next largest difference is in Canada, where those on the left are 24 percentage points more likely than those on the right to think this type of international action will benefit their economy.

Those on the right in many publics are, in turn, more likely than those on the left to think international actions such as the Paris Agreement will mostly harm their economies. Here again, ideological divisions in the U.S. are much larger than those in other publics: 65% of conservatives say international climate change actions will harm the American economy, compared with 12% of liberals who say the same.

In several advanced economies, those who say their current economic situation is good are more likely to say that actions taken by the international community to address climate change will mostly benefit their economies than those who say the economic situation is bad. In Sweden, for example, a majority (55%) of those who say the current economic situation is good also believe international action like the Paris Agreement will benefit the Swedish economy, compared with 31% who are more negative about the state of the economy.

Evaluating the climate change response from the EU, UN, U.S. and China

In addition to reflecting on their own public, respondents were asked to evaluate how four international organizations or countries are handling global climate change. Of the entities asked about, the European Union receives the best ratings, with a median of 63% across the 17 publics surveyed saying the EU is doing a good job handling climate change. A median of 56% say the same for the United Nations. Far fewer believe the U.S. or China – the two leading nations in carbon dioxide emissions – are doing a good job.

EU and UN receive generally higher ratings on climate response than U.S. or China

EU handling of climate change receives high marks in and outside of Europe

Majorities praise the EU’s response to global climate change

Majorities in all but two of the publics surveyed think the EU is doing a good job addressing climate change. However, this positivity is tempered, with most respondents saying the EU’s effort is somewhat good, but few saying it is very good.

Praise for the bloc’s response to climate change is common among the European countries surveyed. In Spain and Greece, around seven-in-ten say the EU is doing at least a somewhat good job, and about six-in-ten or more in the UK, Italy, Sweden and France agree. The Dutch and Germans have more mixed feelings about how the EU is responding to climate change. Notably, only about one-in-ten say the EU is doing a very bad job handling climate change in every European country surveyed but Sweden, where only 5% say so.

Seven-in-ten Canadians believe the EU is doing a good job dealing with climate change, and 62% in the U.S. express the same view.

The Asia-Pacific publics surveyed report similarly positive attitudes on the EU’s climate plans. Around seven-in-ten Australians and Singaporeans consider the EU’s response to climate change at least somewhat good. About six-in-ten or more in New Zealand, South Korea, Japan and Taiwan echo this sentiment.

Climate change actions by UN seen positively among most surveyed

UN response to global climate change elicits generally positive responses

Majorities in most publics also consider the UN response to climate change to be good. A median of 49% across all publics surveyed say that the UN’s actions are somewhat good, and a median of 5% say the actions are very good.

Canadians evaluate the UN’s performance on climate more positively than Americans do. In Canada, roughly six-in-ten say the multilateral organization is doing at least a somewhat good job handling climate change. About half of those in the U.S. agree with that evaluation, with 43% of Americans saying the UN is doing a bad job of dealing with climate change.

In Europe, majorities in Spain, Sweden, the UK, Greece and Italy approve of how the UN is dealing with climate change. Fewer than half of adults in the Netherlands, France and Belgium agree with this evaluation, and only about a third in Germany say the same.

Singaporeans stand out as the greatest share of adults among those surveyed who see the UN’s handling of climate change as good. This includes 14% who say the UN response is very good, which is at least double the share in all other societies surveyed. Majorities in Australia and New Zealand similarly say that the UN is doing a good job.

Many critical of U.S. approach to climate change

Most disapprove of U.S. handling of climate change

In most publics surveyed, adults who say the U.S. is doing a good job of handling climate change are in the minority. A median of 33% say the U.S. is doing a somewhat good job, and a median of just 3% believe the U.S. is doing a very good job.

About half of Americans say their own country is doing a good job in dealing with global climate change, but six-in-ten Canadians say their southern neighbor is doing a bad job.

Ideological right is more enthusiastic about U.S. approach to climate change

Across Europe, most think the U.S. is doing a bad job of addressing climate change, including 75% of Germans and Swedes. And at least a quarter in all European nations surveyed except the UK and Greece say the U.S. is doing a very bad job.

Singaporeans offer the U.S. approach to climate change the most praise in the Asia-Pacific region and across all publics surveyed; around half say they see the U.S. strategy positively. New Zealanders are the most critical in the Asia-Pacific region: Only about a quarter say the U.S. is doing at least a somewhat good job.

Political ideology is linked to evaluations of the U.S. climate strategy. In 12 countries, those on the right of the political spectrum are significantly more likely than those on the left to say the U.S. is doing a good job dealing with global climate change. The difference is greatest in Australia, Canada and Italy.

Few give China positive marks for handling of climate change

Advanced economies disapprove of how China is handling global climate change

The publics surveyed are unenthusiastic about how China is dealing with climate change. A median of 18% across the publics say China is doing a good job, compared with a median of 78% who say the opposite. Notably, a median of 45% say that China is doing a very bad job handling climate change.

Just 18% of Americans and Canadians believe China is doing a good job handling climate change.

Similarly, few in Europe think China is dealing effectively with climate change. In fact, more than four-in-ten in nearly all European countries polled say China is doing a very bad job with regards to climate change. Criticism is less common in Greece, where a third give China positive marks for its climate change action.

Adults in the Asia-Pacific region also generally give China poor ratings for dealing with climate change. South Koreans are exceptionally critical; about two-thirds say China is doing a very bad job, the highest share in all publics surveyed. About four-in-ten or more in New Zealand, Japan and Australia concur. Singaporeans stand out, as half say China is doing a good job, nearly 20 percentage points higher than the next highest public.

In nine countries surveyed, those with less education are more positive toward China’s response to climate change than those with more education. Likewise, those with lower incomes are more inclined to provide positive evaluations of China’s climate change response. Those with less education or lower incomes are also less likely to provide a response in several publics.

CORRECTION (Oct. 13, 2021): In the chart “Publics are divided over the economic impact of international actions to address global climate change,” the “Don’t Know” column has been edited to reflect updated percentages to correct for a data tabulation error. These changes did not affect the report’s substantive findings.

  • For the purpose of comparing educational groups across publics, education levels are standardized based on the UN’s International Standard Classification of Education (ISCED). The “less education” category is secondary education or below and the “more education” category is postsecondary or above in Australia, Belgium, Canada, Denmark, France, Germany, Italy, Japan, Netherlands, New Zealand, Singapore, South Korea, Spain, Sweden, Taiwan, UK and U.S. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • China Global Image
  • Environment & Climate
  • European Union
  • Issue Priorities
  • U.S. Global Image
  • United Nations

Globally, Biden Receives Higher Ratings Than Trump

Americans remain critical of china, how people in hong kong view mainland china and their own identity, in east asia, many people see china’s power and influence as a major threat, u.s.-germany relationship remains solid, but underlying policy differences begin to show, most popular, report materials.

  • American Trends Panel Wave 82
  • Spring 2021 Survey Data

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Gale - A Cengage Company

Global Warming

Long-term warming trends and increases in extreme weather events have the potential to impact all life on Earth. Even though at least 97 percent of climate scientists agree that human activities have contributed to rising global temperatures, the predominance and causes of these phenomena continue to be debated and many Americans deny global warming.

Read the overview below to gain a balanced understanding of the issues and explore the previews of opinion articles that highlight many perspectives on the response to global warming and climate change.

Access Through Your library >>  

Topic Home      |      Social Issues      |      Literature      |      Lifelong Learning & DIY      |      World History

Global warming topic overview.

"Global Warming and Climate Change." Opposing Viewpoints Online Collection , Gale, 2023.

Though the terms global warming and climate change are often used interchangeably, they have different meanings. Climate change describes long-term shifts in Earth's weather patterns that affect temperature, humidity, wind, cloud cover, and precipitation. Global warming refers explicitly to an increase in Earth's average surface temperatures caused by human activities, primarily the burning of fossil fuels. Anthropogenic climate change refers to changes in the climate caused by human activity, particularly industrialization and agricultural practices that release pollutants into the atmosphere.

Overwhelming scientific evidence supports the existence of both global warming and climate change. Through the United Nations' (UN) Intergovernmental Panel on Climate Change (IPCC), thousands of scientists work together to collect and analyze the latest available research related to climate change, its effects, and potential responses. In an interim update to its Sixth Assessment Report (AR6) in 2023, the IPCC estimated that global surface temperatures increased by 1.1°C (1.98°F) between the latter half of the nineteenth century and the first two decades of the twenty-first century. The IPCC has linked climate change and global warming to the increased occurrence and severity of storms, floods, droughts, and wildfires, warning that such disasters will increase further if temperatures continue to rise. The scientists' group also identifies water availability and food production as well as health and wealth being as experiencing observable, widespread, and substantial changes related to climate change. These threats have led scientists to identify global warming and climate change as a climate crisis . The IPCC recognizes human activity, particularly industrialization and certain agricultural practices that release carbon dioxide (CO2), as the primary driver of global warming and climate change.

Despite substantial evidence and a consensus among the scientific community, a vocal minority continues to challenge the science behind climate change. These critics characterize climate change as a natural phenomenon and dispute assertions that human activity has contributed to rising global temperatures. This position may be referred to as climate denial , and those who reject the scientific consensus are considered climate deniers . Fossil fuel companies often provide financial support to politicians, media campaigns, and organizations that promote climate denial.

  • Climate chang e refers to long-term shifts in weather patterns. Global warming is the increase in the planet's average surface temperatures caused by human activities such as the burning of fossil fuels.
  • Causes of climate change related to human activity are referred to as anthropogenic . Natural causes of climate change are called naturogenic .
  • Earth's atmosphere contains several gases that trap heat from the sun and prevent it from escaping into space. These gases are called greenhouse gases (GHGs).
  • July 2023 was the hottest month ever recorded on Earth.
  • Global warming has the potential to cause disruptions in the food supply, harm ecosystems and wildlife habitats, and threaten the planet's biodiversity.
  • Countries that experience the harshest effects of climate change are often low- and middle-income countries who contribute fewer greenhouse gas emissions than wealthier countries that do not experience the effects so intensely.
  • The United States has joined other countries in making commitments to fight climate change, but that commitment has largely depended on the country's leadership.
  • Though the administration of President Joe Biden has taken more aggressive steps to combat the climate crisis, critics question whether these steps will meet the administration's ambitious goals and whether those goals are sufficient.

CAUSES OF CLIMATE CHANGE

Earth's atmosphere contains several gases that trap heat from the sun and prevent it from escaping into space. This phenomenon is known as the greenhouse effect , and the gases are called greenhouse gases (GHGs). The main GHGs in nature are carbon dioxide, methane, and nitrous oxide. Without the greenhouse effect, Earth would be too cold to support life. Over time, the amount of GHGs trapped in Earth's atmosphere has increased significantly, causing worldwide temperatures to rise.

Natural processes on Earth constantly create and destroy GHGs. For example, plant and animal matter decay produce carbon dioxide, which plants then absorb during photosynthesis. This natural cycle stabilizes atmospheric levels of carbon dioxide. Climate change scientists at the National Aeronautics and Space Administration (NASA) and other federal and international agencies recognize that natural factors, including volcanic activity and shifts in the planet's crust, continue to play a role in climate change. However, they generally agree that these factors alone do not explain the substantial rise in Earth's temperature. Natural causes of climate change are referred to as naturogenic , while causes of climate change related to human activity are called anthropogenic .

Earth's vegetation releases and absorbs over two hundred billion metric tons of carbon dioxide annually. Human activities, such as the burning of fossil fuels, add approximately seven billion metric tons per year. Climate scientists believe the cumulative effect of this additional carbon dioxide has had a dramatic impact on the atmosphere. Deforestation has also contributed to this increase by releasing carbon dioxide stored in trees and eliminating forests that would continue to absorb many tons of carbon dioxide. According to the National Oceanic and Atmospheric Administration (NOAA), as of 2023 the amount of carbon dioxide in the atmosphere had increased by 50 percent since the beginning of the Industrial Revolution in Great Britain in the eighteenth century.

Increased levels of other GHGs, such as nitrous oxide and methane, have also resulted from human activity. Several agricultural and industrial processes, such as the use of certain fertilizers in farming, produce extensive amounts nitrous oxide. Methane emissions come from fossil fuel production, landfills, and livestock. Though much smaller quantities of these gases exist in Earth's atmosphere, some scientists believe they cause more harm than carbon dioxide. Methane, for example, is about twenty-one times as potent as carbon dioxide at trapping heat. Humans have also created and released GHGs that do not occur in nature. These include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). These gases, released during industrial processes such as aluminum production and electrical transmission, trap thousands of times more heat in the atmosphere than carbon dioxide.

CLIMATE CHANGE PREDICTIONS

A broad consensus exists in the scientific community that the consequences of climate change may be devastating, though the exact nature of the changes is difficult to predict. No model to chart climate patterns has had complete accuracy. For instance, most climate models failed to predict a slowdown in rising temperatures starting in 1998 and ending in 2012. The slowdown was attributed to volcanic eruptions that blocked out the sun and cooled temperatures, low levels of solar activity, and naturally occurring variability. Similarly, some predictions have underestimated threats.

In its initial assessment of rising sea levels in 1990, the IPCC initially anticipated a sea level rise of 1.9 millimeters per year from that year onward. However, as of 2023, the IPCC reports that sea levels rose at a rate of 3.7 millimeters per year between 2006 and 2018. Sea level rise contributes to increased flooding and the damage caused by extreme storms such as hurricanes in coastal cities. The IPCC predicts that sea level rise could threaten as many as one billion people living in low-lying cities and communities by 2041, noting the threats to livelihoods, cultural heritage, and the existence of many island nations.

US PUBLIC OPINION ON CLIMATE CHANGE

The effects of human activities on global warming and climate change are acknowledged and accepted by most people in the United States. According to annual polls conducted by Gallup since 2001, the public's beliefs in anthropogenic climate change has increased. In 2023, 62 percent of Americans accepted that human activities cause climate change (up from 61 percent in 2001), 60 percent believed that the effects have begun (up from 54 percent), and 46 percent stated that global warming will soon pose a serious threat (up from 31 percent).

Researchers have observed a strong correlation between Americans' political affiliations and their acceptance of climate science and levels of concern about global warming. In 2023, about 85 percent of Democrats believed the effects of global warming were already apparent, and 88 percent believed humans caused them. In comparison, only 33 percent of Republicans agreed with the first statement and 29 percent agreed with the second. Most independents believed both statements (61 and 66 percent, respectively). However, further analysis by Gallup in 2022 revealed that Republicans under age fifty-five expressed greater concern about global warming than those age fifty-five and older but still significantly fewer than Democrats or Independents of any age group.

EFFECTS OF GLOBAL WARMING

The potential consequences of global warming remain an issue of great debate and uncertainty. However, most experts predict dramatic and severe problems for future generations. Warmer oceans could result in stronger and more frequent hurricanes. As temperatures climb, some regions could experience frequent heat waves that bring devastating droughts and wildfires. In the United States, the 2023 summer season experienced a series of heat waves that broke temperature records in different parts of the country, particularly in Washington and Oregon. In July 2023, heat waves also affected many countries in the Northern Hemisphere, including Canada, China, and some European countries. NASA has confirmed that July 2023 was the hottest month ever recorded on Earth by a significant margin, identifying global warming as the principal causal factor.

Climate change has been linked to severe, exceptional droughts across several western states, including Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, and Washington. Climate scientists refer to this phenomenon a "megadrought," and it has contributed to massive wildfires in the first decades of the twenty-first century.

From 2018 to 2021, California and Oregon endured massive wildfires that burned millions of acres and led to the displacement of thousands of residents, widespread destruction of property, and the deaths of dozens of people. California had a record-breaking wildfire season in 2020, including the state's first gigafire —a blaze that burned over one million acres of land. By the end of the year, wildfires burned more than four million acres throughout the state. Though wildfires were less frequent throughout the United States from 2022 to 2023 than in the preceding several years, the effects of global warming and the federal and state governments' lack of emergency preparedness led to one of the deadliest wildfires in recorded history. In August 2023 a small brush fire that a broken powerline may have caused started burning just outside the town of Lahaina on the island of Maui in Hawaii. In just a few minutes, winds blew the fire toward town, devouring wooden buildings, telephone and electric power lines, and water pipes. Without enough water pressure, Lahaina's fire department failed to contain the wildfire, and with the town's communication and power systems down, residents were not immediately alerted. As of September 2023, authorities had confirmed that ninety-seven people had been killed in the wildfire and thirty-one individuals were still missing in what had become the eleventh deadliest wildfire in world history.

A megadrought could also lead to water shortages. For example, the US government issued its first Tier 1 federal water shortage declaration in August 2021 for the Colorado River. The river provides water for several US states and parts of Mexico. The first cuts to state water supplies took effect in October in Arizona and Nevada. Upon revisiting the issue in August 2022, the government intensified its alarm, raising the classification to a Tier 2 federal water shortage and issuing drastic cuts to state water allowances. In August 2023, the government announced that the Colorado River water shortage would return to Tier 1 in 2024 and that water restrictions would be eased. The government's decision came after an unusually high amount of snowpack formed on the mountains near the Colorado River during the 2022–2023 winter season.

Many coastal areas worldwide could also face severe flooding due to rising sea levels. Low-lying islands in the Pacific Ocean would eventually become uninhabitable. From 1880 to 2022, sea levels rose about eight to nine inches worldwide. The hurricane season of 2017 proved to be the costliest hurricane season since 1900, causing over $265 billion of property damage in the United States and more than three thousand deaths in Florida, Texas, and Puerto Rico. The year 2020 experienced thirty named storms, the most to ever occur in a single hurricane season. The first hurricane to make landfall in 2022 was Hurricane Fiona, which struck Puerto Rico and other Caribbean Islands in September. All of Puerto Rico, which was still recovering from devastating hurricanes in 2017, lost power, and several areas suffered flooding and landslides. Though twenty tropical storms affected the United States during the 2023 hurricane season, only three made landfall. One of them, Hurricane Idalia, was the strongest hurricane to hit Florida's Big Bend region since 1950, leaving over $1 billion worth of damages.

Global warming also threatens vulnerable ecosystems and wildlife habitats. Extended periods of drought can turn fertile lands into deserts with little vegetation. Plants and animals may not survive the rapid changes caused by global warming and could become extinct. Over the long term, such changes would negatively affect Earth's biodiversity. Environmental scientists warn that some ecosystems, such as coral reefs and coastal mangrove swamps, will likely disappear entirely.

The climate crisis also threatens to disrupt the global food supply, worsen economic inequality, and create security issues. Some areas might become too dry or too wet to support agriculture. As global warming causes more places to become uninhabitable, such displacement can drive mass migration. Communities struggle to recover from climate disasters, often exacerbating existing problems in those areas. Disputes over access to water have arisen in several states, including those with areas that rely on Colorado River water. Around the world, some water disputes have developed into armed conflicts.

CRITICAL THINKING QUESTIONS

  • For what reasons do you think perceptions of anthropogenic climate change vary among Democrats and Republicans in the United States?
  • What potential long-term consequences of climate change do you think will be the most difficult to manage? Explain your reasoning.
  • In what ways, if at all, do you think the federal government could change its approach to address climate change more effectively? Explain your answer.

INTERNATIONAL RESPONSE AND US POLICY

The scope and global nature of the climate crisis necessitate that countries work together. Because an effective response requires countries to make sacrifices, negotiations to develop a coordinated international response have encountered repeated obstacles. Further, industrialized countries have contributed a disproportionate amount to the crisis. In contrast, less industrialized, lower-income countries have disproportionately felt the effects of the crisis and often lack the resources and infrastructure for climate change mitigation and adaptation.

Since 1995, the UN has hosted annual conferences to discuss climate change as part of its Framework Convention on Climate Change (UNFCCC). In 1997, delegates gathered in Kyoto, Japan, to negotiate an international treaty known as the Kyoto Protocol. This treaty required industrialized countries to reduce their GHG emissions by a certain percentage over five years. As of November 2023, 191 countries and the European Union had ratified the Kyoto Protocol. The United States has not ratified the agreement, citing concerns that it does not impose restrictions on China and India. Canada withdrew in 2011.

In 2015, world leaders set new climate goals at the UNFCCC conference (COP21) in Paris, France. The resultant Paris Agreement aimed to limit the rise in global temperatures to less than 2°C (3.6°F) above preindustrial levels and provide countries with the tools needed to counteract climate change. President Barack Obama played a leading role in brokering the Paris Agreement and pushed for greater environmental restrictions during his presidency. The Paris Agreement went into effect with the commitment of the United States and seventy-three other parties in November 2016. Obama's successor, Donald Trump, announced in 2017 that the United States would withdraw its support. After a required period, the United States officially withdrew from the agreement in November 2020.

Upon taking office in January 2021, President Joe Biden reentered the country in the Paris Agreement. Biden vowed that his administration would prioritize climate policy and issued several executive orders that made sustainability and addressing climate change important considerations across all federal government agencies. In April 2021, the president hosted a virtual climate summit attended by forty world leaders and pledged that the United States would reduce its carbon emissions to half of 2005 levels by 2030. In June 2022, the Biden administration experienced a setback when the Supreme Court ruled in West Virginia v. Environmental Protection Agency (EPA) that the Clean Air Act did not grant the EPA authority to regulate GHG emissions without Congress passing additional legislation.

In August 2022, Biden signed the Inflation Reduction Act, a law promoting a sustainable green economy by incentivizing emissions reductions, supporting clean energy projects, and requiring the wealthiest individuals and corporations to pay more taxes. Though many advocates celebrated the law as the federal government's most aggressive step to combat the climate crisis, the law has also attracted criticism. Some detractors contend that the law remains insufficient to have a meaningful impact on the climate crisis or its other targets, which include health care costs, worker protections, and inflation. Further, Republicans have framed the law as an undue empowerment of the Internal Revenue Service (IRS), the agency responsible for collecting taxes. Public reception of Biden's climate policies has largely split along party lines. A June 2023 Pew Research Center survey revealed that 76 percent of Democrats approved of Biden's climate policies while 82 percent of Republicans disapproved.

More Articles

Global warming and climate change can be stopped if people try harder.

“Nations need to accelerate deployment of existing technologies to lock in and build on the gains of the last three years.”

Dr. Pep Canadell is Executive Director of the Global Carbon Project, Deputy Research Director at Atmosphere and Land Observation Assessment, and a research scientist at CSIRO Marine and Atmospheric Research.

In the following viewpoint, Canadell argues that recent efforts to improve energy efficiency and increase the use of clean energy have contributed to a stalling in fossil fuel emissions. However, Canadell contends that governments will need to increase their efforts to meet the climate goals established in the 2015 Paris Agreement. He compares the successes and shortcomings of China, the United States, India, Australia, and the European Union in reducing emissions. He examines the practice of storing carbon dioxide underground through carbon capture and storage (CCS) and concludes that thousands of CCS facilities will be necessary to meet climate goals.

Politicians Use Climate Change as an Excuse to Limit Personal Freedom

"Repetition is precisely what we are experiencing in the major media, which have selectively interviewed people who promote the climate change myth."

Cal Thomas is a syndicated columnist and the author of several books, including What Works: Common Sense Solutions for a Stronger America .

In the following viewpoint, Thomas argues that politicians use the issue of climate change as an excuse for the government to interfere in the lives of private citizens. Noting that some climate predictions have overestimated the impact of global warming, the author disputes the widely held belief that global temperatures are rising as a result of human activity. He contends that politicians and the mainstream media encourage public outrage and generate panic over climate change by promoting the opinions and predictions of alarmists while ignoring the views of skeptics.

Renewable Energy Sources Benefit Health, Climate, and the Economy

The Union of Concerned Scientists is a membership organization of citizens and scientists who work together to promote the responsible use of science to improve the world.

Renewable energy sources, such as solar, wind, geothermal, hydroelectric, and biomass, each come with their own set of unique costs and benefits, but overall these cleaner energy sources have overwhelmingly positive effects on the climate, human health, and the economy. Renewable energy sources represent a vast and inexhaustible supply of energy, produce little or no global warming emissions, improve public health and environmental quality, help stabilize energy prices, create jobs and other economic benefits, and contribute to a more reliable and resilient energy system. The costs of renewable energy have declined in recent years and are projected to continue decreasing, making renewables more accessible and affordable for consumers than ever.

Biomass Power Plants Produce Just as Much Pollution as Coal-Fired Power Plants

"There is no quicker way to move carbon into the atmosphere—the opposite of what we want—than through utility-scale biomass energy plants that burn millions of trees per year."

In the following viewpoint, Gordon Clark and Mary Booth point out that although biomass energy has been promoted as environmentally friendly, new and proposed biomass power plants emit just as much pollution and carbon dioxide as those using fossil fuels, sometimes even more. The arguments favoring biomass power plants as a renewable energy source are not valid, they say; recent studies have shown this, and some states are eliminating subsidies and tightening regulations requiring efficiency. The authors speculate whether the Environmental Protection Agency will take federal action and formulate rules that make biomass power plants responsible for the greenhouse gases they release. Booth is the director of the Partnership for Policy Integrity, and Clark is its communications director.

Looking for information on other topics?

Access Through Your Library >>

What evidence exists that Earth is warming and that humans are the main cause?

We know the world is warming because people have been recording daily high and low temperatures at thousands of weather stations worldwide, over land and ocean, for many decades and, in some locations, for more than a century. When different teams of climate scientists in different agencies (e.g., NOAA and NASA) and in other countries (e.g., the U.K.’s Hadley Centre) average these data together, they all find essentially the same result: Earth’s average surface temperature has risen by about 1.8°F (1.0°C) since 1880. 

Bar graph of global temperature anomalies with an overlay of a line graph of atmospheric carbon dioxide from 1850-2023

( bar chart ) Yearly temperature compared to the twentieth-century average from 1850–2023. Red bars mean warmer-than-average years; blue bars mean colder-than-average years. (line graph) Atmospheric carbon dioxide amounts: 1850-1958 from IAC , 1959-2023 from NOAA Global Monitoring Lab . NOAA Climate.gov graph, adapted from original by Dr. Howard Diamond (NOAA ARL).

In addition to our surface station data, we have many different lines of evidence that Earth is warming ( learn more ). Birds are migrating earlier, and their migration patterns are changing.  Lobsters  and  other marine species  are moving north. Plants are blooming earlier in the spring. Mountain glaciers are melting worldwide, and snow cover is declining in the Northern Hemisphere (Learn more  here  and  here ). Greenland’s ice sheet—which holds about 8 percent of Earth’s fresh water—is melting at an accelerating rate ( learn more ). Mean global sea level is rising ( learn more ). Arctic sea ice is declining rapidly in both thickness and extent ( learn more ).

Aerial photo of glacier front with a graph overlay of Greenland ice mass over time

The Greenland Ice Sheet lost mass again in 2020, but not as much as it did 2019. Adapted from the 2020 Arctic Report Card, this graph tracks Greenland mass loss measured by NASA's GRACE satellite missions since 2002. The background photo shows a glacier calving front in western Greenland, captured from an airplane during a NASA Operation IceBridge field campaign. Full story.

We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth’s natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures. Since 1800, the amount of carbon dioxide in the atmosphere  has increased  from about 280 parts per million to 410 ppm in 2019. We know from both its rapid increase and its isotopic “fingerprint” that the source of this new carbon dioxide is fossil fuels, and not natural sources like forest fires, volcanoes, or outgassing from the ocean.

DIgital image of a painting of a fire burning in a coal pile in a small village

Philip James de Loutherbourg's 1801 painting, Coalbrookdale by Night , came to symbolize the start of the Industrial Revolution, when humans began to harness the power of fossil fuels—and to contribute significantly to Earth's atmospheric greenhouse gas composition. Image from Wikipedia .

Finally, no other known climate influences have changed enough to account for the observed warming trend. Taken together, these and other lines of evidence point squarely to human activities as the cause of recent global warming.

USGCRP (2017). Climate Science Special Report: Fourth National Climate Assessment, Volume 1 [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, doi:  10.7930/J0J964J6 .

National Fish, Wildlife, and Plants Climate Adaptation Partnership (2012):  National Fish, Wildlife, and Plants Climate Adaptation Strategy . Association of Fish and Wildlife Agencies, Council on Environmental Quality, Great Lakes Indian Fish and Wildlife Commission, National Oceanic and Atmospheric Administration, and U.S. Fish and Wildlife Service. Washington, D.C. DOI: 10.3996/082012-FWSReport-1

IPCC (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

NASA JPL: "Consensus: 97% of climate scientists agree."  Global Climate Change . A website at NASA's Jet Propulsion Laboratory (climate.nasa.gov/scientific-consensus). (Accessed July 2013.)

We value your feedback

Help us improve our content

Related Content

News & features, 2017 state of the climate: mountain glaciers, warming waters shift fish communities northward in the arctic, climate & fish sticks, maps & data, past climate, future climate, land - terrestrial climate variables, teaching climate, toolbox for teaching climate & energy, student climate & conservation congress (sc3), climate youth engagement, climate resilience toolkit, arctic oceans, sea ice, and coasts, alaska and the arctic, food safety and nutrition.

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Climatic variation since the last glaciation
  • The greenhouse effect
  • Radiative forcing
  • Water vapour
  • Carbon dioxide
  • Surface-level ozone and other compounds
  • Nitrous oxides and fluorinated gases
  • Land-use change
  • Stratospheric ozone depletion
  • Volcanic aerosols
  • Variations in solar output
  • Variations in Earth’s orbit
  • Water vapour feedback
  • Cloud feedbacks
  • Ice albedo feedback
  • Carbon cycle feedbacks
  • Modern observations
  • Prehistorical climate records
  • Theoretical climate models
  • Patterns of warming
  • Precipitation patterns
  • Regional predictions
  • Ice melt and sea level rise
  • Ocean circulation changes
  • Tropical cyclones
  • Environmental consequences of global warming
  • Socioeconomic consequences of global warming

Grinnell Glacier shrinkage

How does global warming work?

Where does global warming occur in the atmosphere, why is global warming a social problem, where does global warming affect polar bears.

  • What is the Kyoto Protocol?

Brown layer of Los Angeles smog; photo taken on November 10, 2016.(California, environment, smog)

global warming

Our editors will review what you’ve submitted and determine whether to revise the article.

  • U.S. Department of Transportation - Global Warming: A Science Overview
  • NOAA Climate.gov - Climate Change: Global Temperature
  • Natural Resources Defense Council - Global Warming 101
  • American Institute of Physics - The discovery of global warming
  • LiveScience - Causes of Global Warming
  • global warming - Children's Encyclopedia (Ages 8-11)
  • global warming - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Grinnell Glacier shrinkage

Human activity affects global surface temperatures by changing Earth ’s radiative balance—the “give and take” between what comes in during the day and what Earth emits at night. Increases in greenhouse gases —i.e., trace gases such as carbon dioxide and methane that absorb heat energy emitted from Earth’s surface and reradiate it back—generated by industry and transportation cause the atmosphere to retain more heat, which increases temperatures and alters precipitation patterns.

Global warming, the phenomenon of increasing average air temperatures near Earth’s surface over the past one to two centuries, happens mostly in the troposphere , the lowest level of the atmosphere, which extends from Earth’s surface up to a height of 6–11 miles. This layer contains most of Earth’s clouds and is where living things and their habitats and weather primarily occur.

Continued global warming is expected to impact everything from energy use to water availability to crop productivity throughout the world. Poor countries and communities with limited abilities to adapt to these changes are expected to suffer disproportionately. Global warming is already being associated with increases in the incidence of severe and extreme weather, heavy flooding , and wildfires —phenomena that threaten homes, dams, transportation networks, and other facets of human infrastructure. Learn more about how the IPCC’s Sixth Assessment Report, released in 2021, describes the social impacts of global warming.

Polar bears live in the Arctic , where they use the region’s ice floes as they hunt seals and other marine mammals . Temperature increases related to global warming have been the most pronounced at the poles, where they often make the difference between frozen and melted ice. Polar bears rely on small gaps in the ice to hunt their prey. As these gaps widen because of continued melting, prey capture has become more challenging for these animals.

Recent News

global warming , the phenomenon of increasing average air temperatures near the surface of Earth over the past one to two centuries. Climate scientists have since the mid-20th century gathered detailed observations of various weather phenomena (such as temperatures, precipitation , and storms) and of related influences on climate (such as ocean currents and the atmosphere’s chemical composition). These data indicate that Earth’s climate has changed over almost every conceivable timescale since the beginning of geologic time and that human activities since at least the beginning of the Industrial Revolution have a growing influence over the pace and extent of present-day climate change .

Giving voice to a growing conviction of most of the scientific community , the Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC’s Sixth Assessment Report (AR6), published in 2021, noted that the best estimate of the increase in global average surface temperature between 1850 and 2019 was 1.07 °C (1.9 °F). An IPCC special report produced in 2018 noted that human beings and their activities have been responsible for a worldwide average temperature increase between 0.8 and 1.2 °C (1.4 and 2.2 °F) since preindustrial times, and most of the warming over the second half of the 20th century could be attributed to human activities.

AR6 produced a series of global climate predictions based on modeling five greenhouse gas emission scenarios that accounted for future emissions, mitigation (severity reduction) measures, and uncertainties in the model projections. Some of the main uncertainties include the precise role of feedback processes and the impacts of industrial pollutants known as aerosols , which may offset some warming. The lowest-emissions scenario, which assumed steep cuts in greenhouse gas emissions beginning in 2015, predicted that the global mean surface temperature would increase between 1.0 and 1.8 °C (1.8 and 3.2 °F) by 2100 relative to the 1850–1900 average. This range stood in stark contrast to the highest-emissions scenario, which predicted that the mean surface temperature would rise between 3.3 and 5.7 °C (5.9 and 10.2 °F) by 2100 based on the assumption that greenhouse gas emissions would continue to increase throughout the 21st century. The intermediate-emissions scenario, which assumed that emissions would stabilize by 2050 before declining gradually, projected an increase of between 2.1 and 3.5 °C (3.8 and 6.3 °F) by 2100.

Many climate scientists agree that significant societal, economic, and ecological damage would result if the global average temperature rose by more than 2 °C (3.6 °F) in such a short time. Such damage would include increased extinction of many plant and animal species, shifts in patterns of agriculture , and rising sea levels. By 2015 all but a few national governments had begun the process of instituting carbon reduction plans as part of the Paris Agreement , a treaty designed to help countries keep global warming to 1.5 °C (2.7 °F) above preindustrial levels in order to avoid the worst of the predicted effects. Whereas authors of the 2018 special report noted that should carbon emissions continue at their present rate, the increase in average near-surface air temperature would reach 1.5 °C sometime between 2030 and 2052, authors of the AR6 report suggested that this threshold would be reached by 2041 at the latest.

Combination shot of Grinnell Glacier taken from the summit of Mount Gould, Glacier National Park, Montana in the years 1938, 1981, 1998 and 2006.

The AR6 report also noted that the global average sea level had risen by some 20 cm (7.9 inches) between 1901 and 2018 and that sea level rose faster in the second half of the 20th century than in the first half. It also predicted, again depending on a wide range of scenarios, that the global average sea level would rise by different amounts by 2100 relative to the 1995–2014 average. Under the report’s lowest-emission scenario, sea level would rise by 28–55 cm (11–21.7 inches), whereas, under the intermediate emissions scenario, sea level would rise by 44–76 cm (17.3–29.9 inches). The highest-emissions scenario suggested that sea level would rise by 63–101 cm (24.8–39.8 inches) by 2100.

research report on global warming

The scenarios referred to above depend mainly on future concentrations of certain trace gases, called greenhouse gases , that have been injected into the lower atmosphere in increasing amounts through the burning of fossil fuels for industry, transportation , and residential uses. Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect , a warming of Earth’s surface and lower atmosphere caused by the presence of water vapour , carbon dioxide , methane , nitrous oxides , and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and nitrous oxides in the atmosphere surpassed those found in ice cores dating back 800,000 years.

Of all these gases, carbon dioxide is the most important, both for its role in the greenhouse effect and for its role in the human economy. It has been estimated that, at the beginning of the industrial age in the mid-18th century, carbon dioxide concentrations in the atmosphere were roughly 280 parts per million (ppm). By the end of 2022 they had risen to 419 ppm, and, if fossil fuels continue to be burned at current rates, they are projected to reach 550 ppm by the mid-21st century—essentially, a doubling of carbon dioxide concentrations in 300 years.

What's the problem with an early spring?

A vigorous debate is in progress over the extent and seriousness of rising surface temperatures, the effects of past and future warming on human life, and the need for action to reduce future warming and deal with its consequences. This article provides an overview of the scientific background related to the subject of global warming. It considers the causes of rising near-surface air temperatures, the influencing factors, the process of climate research and forecasting, and the possible ecological and social impacts of rising temperatures. For an overview of the public policy developments related to global warming occurring since the mid-20th century, see global warming policy . For a detailed description of Earth’s climate, its processes, and the responses of living things to its changing nature, see climate . For additional background on how Earth’s climate has changed throughout geologic time , see climatic variation and change . For a full description of Earth’s gaseous envelope, within which climate change and global warming occur, see atmosphere .

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 18 June 2024

How climate change is hitting Europe: three graphics reveal health impacts

  • Carissa Wong 0

Carissa Wong is a science journalist in London.

You can also search for this author in PubMed   Google Scholar

A water spray helps people in Bratislava to cool down on a hot summer day. Credit: Bilge Kagan Kaya/Alamy

Global warming is costing lives, deepening health inequality and driving the spread of disease-carrying ticks and parasites across Europe, according to a major report.

The report reviewed hundreds of studies on the health effects of climate change — as well as the actions being taken in response — in Europe. Climate and health researcher Rachel Lowe and her colleagues tracked 42 indicators, including those on heat-related deaths, the spread of infectious diseases and trends in research on health and climate change.

research report on global warming

Extreme heat harms health — what is the human body’s limit?

“We really need some drastic action to be taken by European countries to help keep the European population, and also populations across the globe, safe from the health impacts of climate change,” says Lowe, who is at the Barcelona Supercomputing Center and at the Catalan Institution for Research and Advanced Studies in Spain.

The report, published last month in Lancet Public Health 1 , is the second — after one published in 2022 2 — from a study called ‘The Lancet Countdown: Health and Climate Change in Europe’.

“The report emphasizes the alarming increase in mortality and morbidity linked to rising temperatures, and the proliferation of climate-sensitive diseases,” says Ana Raquel Nunes, a health and environment researcher at the University of Warwick, UK.

Researchers say that further studies should take a holistic approach to the climate–health nexus. “You can’t treat all these health impacts of climate change in isolation,” says Ruth Doherty, a climate-change and health researcher at the University of Edinburgh, UK. “We really need to know about how these multiple exposures affect the population.”

In three graphics, Nature outlines how a warmer world is affecting health and research across Europe.

Deadly heat

Lowe and her colleagues used mortality and temperature data, as well as prior evidence for how heat influences mortality, to estimate that, from 2003–12 to 2013–22, heat-related mortality increased by an average of 17 deaths per 100,000 people across Europe. The increase in heat-related mortality was higher in women compared with men (See ‘Heat kills’).

Heat kills: Two maps of Western Europe showing change in heat-related mortality rates from 2003-12 to 2013-22.

Source: Ref 1.

“Gender disparities may be explained by differences in terms of losing heat from the body and maximum sweat rates,” says Kim van Daalen, who studies climate change, disease and gender inequity at the Barcelona Supercomputing Center. Women might also generally be at greater risk of heat stress after ovulation, when they tend to have higher body temperature, she says.

Another factor that could be driving the gender gap is that women generally reach older ages than men, and older people are generally more vulnerable to heat-related stresses, says Lowe. Older people are also more likely to live alone, which puts them in greater danger from heat, she says.

Ticks and parasites

Warmer temperatures are enabling disease-carrying parasites to expand into more regions and spurring the growth of tick populations. One pathogen that is becoming more widespread owing to climate change is the single-cell parasite Leishmania infantum . It is transmitted to people when female sandflies ( Phlebotomus sp. ) bite human skin to feed on blood. The parasite usually causes skin ulcers across the body, which can be debilitating. In extreme cases, it can cause fevers and the swelling of the spleen and liver, and could be fatal.

Inching north: Map of Western Europe showing the predicted climate suitability of L. infantum from 2001-10 to 2011-20.

The researchers estimated that warmer and more-humid conditions across Europe have enabled sandflies and the parasites they carry to spread north into new territories. Their range was wider in the 2010s than in the 2000s. “Rising temperatures create more favourable conditions for sandflies to survive and reproduce,” says van Daalen. “Warmer conditions can also accelerate the life cycle of the parasite within sandflies,” she says (See ‘Inching North’).

The team also found that warmer temperatures have made Europe more suitable for the tick Ixodes ricinus , which can transmit a range of diseases when it bites people. “Tick-borne diseases, such as Lyme disease and tick-borne encephalitis, cause symptoms ranging from flu-like illness to severe neurological and cardiovascular complications, leading to missed work, long-term disability and substantial health-care costs,” says van Daalen.

Across most of the continent, I. ricinus found a more hospitable climate to feed and grow in 2013–22 than it did in 1951–60, as measured by the average number of months per year when temperatures were optimal for the juvenile stage of its life cycle.

Publishing boom

As the world warms, research on how climate change intersects with Europeans’ health has intensified, as seen in the number of papers tracked in the open-access database OpenAlex. The researchers counted hundreds of studies on how climate change and Europeans’ health intersect, published between 1991 and 2022. The majority of those studies focused on how global warming affects health, but some also looked into the greenhouse gases emitted by health-care systems, or how to protect people from climate change that is already happening (See ‘Hot topic’).

Hot topic: Chart showing numbers of papers published on topics around climate change and health in Europe from 1990 to 2022.

The authors also found that around 2% of the studies published in 2022 on climate health referenced equality, equity or justice. “This highlights a substantial gap in research,” says van Daalen. “To properly respond to the climate-related health impacts, it is important to understand which populations are disproportionately affected and most at risk,” she says.

doi: https://doi.org/10.1038/d41586-024-02006-3

Van Daalen, K. R. et al. Lancet Public Health https://doi.org/10.1016/S2468-2667(24)00055-0 (2024).

Article   PubMed   Google Scholar  

Van Daalen, K. R. et al. Lancet Public Health 7 , e942–e965 (2022).

Download references

Reprints and permissions

Related Articles

research report on global warming

  • Climate change
  • Public health

Extending the Sustainable Development Goals to 2050 — a road map

Extending the Sustainable Development Goals to 2050 — a road map

Comment 17 JUN 24

Possible shift in controls of the tropical Pacific surface warming pattern

Possible shift in controls of the tropical Pacific surface warming pattern

Perspective 12 JUN 24

To save the high seas, plan for climate change

To save the high seas, plan for climate change

Comment 12 JUN 24

‘It can feel like there’s no way out’ — political scientists face pushback on their work

‘It can feel like there’s no way out’ — political scientists face pushback on their work

News Feature 19 JUN 24

Twelve scientist-endorsed tips to get over writer’s block

Twelve scientist-endorsed tips to get over writer’s block

Career Feature 13 JUN 24

Elite researchers in China say they had ‘no choice’ but to commit misconduct

Elite researchers in China say they had ‘no choice’ but to commit misconduct

News 11 JUN 24

What causes long COVID? Case builds for rogue antibodies

What causes long COVID? Case builds for rogue antibodies

News 13 JUN 24

Huge amounts of bird-flu virus found in raw milk of infected cows

Huge amounts of bird-flu virus found in raw milk of infected cows

News 05 JUN 24

Underfunding cannabis research hampers sensible policymaking and boosts the black market

Correspondence 04 JUN 24

Senior Research Associate (m/f/d) - permanent position - Institute of Neuropathology

Main topics of scientific projects are: Kallikrein-8 as an early biomarker and therapeutic Target for Alzheimer’s Disease Epigenetic effects of e...

Essen, Nordrhein-Westfalen (DE)

Universitätsklinikum (AöR)

research report on global warming

Department of Health and Human Services (DHHS), is seeking exceptional candidates for the position of Director

Bethesda, Maryland (US)

National Institutes of Health

research report on global warming

Principal Investigator Positions at the Institute for Regenerative Biology and Medicine, CIMR

Regenerative Biology and Medicine, including but not limited to disease immunology, ageing, biochemistry of extracellular matrix...

Beijing, China

The Chinese Institutes for Medical Research (CIMR), Beijing

research report on global warming

Principal Investigator Positions at the Institute for Molecular and Cellular Therapy, CIMR, Beijing

We're looking for outstanding scientists at all ranks interested in developing novel therapeutics in all disease areas.

Post-Doctoral Fellowship in Regenerative Biology and Medicine (Lab of. Dr. Yuval Rinkevich)

Discovery of cellular and molecular mechanisms of tissue repair and regeneration.

Institute for Regenerative Biology and Medicine, Chinese Institutes for Medical Research (CIMR)

research report on global warming

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions.

As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth.

Industry and Transport

Causes of Climate Change

Generating power

Generating electricity and heat by burning fossil fuels causes a large chunk of global emissions. Most electricity is still generated by burning coal, oil, or gas, which produces carbon dioxide and nitrous oxide – powerful greenhouse gases that blanket the Earth and trap the sun’s heat. Globally, a bit more than a quarter of electricity comes from wind, solar and other renewable sources which, as opposed to fossil fuels, emit little to no greenhouse gases or pollutants into the air.

Manufacturing goods

Manufacturing and industry produce emissions, mostly from burning fossil fuels to produce energy for making things like cement, iron, steel, electronics, plastics, clothes, and other goods. Mining and other industrial processes also release gases, as does the construction industry. Machines used in the manufacturing process often run on coal, oil, or gas; and some materials, like plastics, are made from chemicals sourced from fossil fuels. The manufacturing industry is one of the largest contributors to greenhouse gas emissions worldwide.

Cutting down forests

Cutting down forests to create farms or pastures, or for other reasons, causes emissions, since trees, when they are cut, release the carbon they have been storing. Each year approximately 12 million hectares of forest are destroyed. Since forests absorb carbon dioxide, destroying them also limits nature’s ability to keep emissions out of the atmosphere. Deforestation, together with agriculture and other land use changes, is responsible for roughly a quarter of global greenhouse gas emissions.

Using transportation

Most cars, trucks, ships, and planes run on fossil fuels. That makes transportation a major contributor of greenhouse gases, especially carbon-dioxide emissions. Road vehicles account for the largest part, due to the combustion of petroleum-based products, like gasoline, in internal combustion engines. But emissions from ships and planes continue to grow. Transport accounts for nearly one quarter of global energy-related carbon-dioxide emissions. And trends point to a significant increase in energy use for transport over the coming years.

Producing food

Producing food causes emissions of carbon dioxide, methane, and other greenhouse gases in various ways, including through deforestation and clearing of land for agriculture and grazing, digestion by cows and sheep, the production and use of fertilizers and manure for growing crops, and the use of energy to run farm equipment or fishing boats, usually with fossil fuels. All this makes food production a major contributor to climate change. And greenhouse gas emissions also come from packaging and distributing food.

Powering buildings

Globally, residential and commercial buildings consume over half of all electricity. As they continue to draw on coal, oil, and natural gas for heating and cooling, they emit significant quantities of greenhouse gas emissions. Growing energy demand for heating and cooling, with rising air-conditioner ownership, as well as increased electricity consumption for lighting, appliances, and connected devices, has contributed to a rise in energy-related carbon-dioxide emissions from buildings in recent years.

Consuming too much

Your home and use of power, how you move around, what you eat and how much you throw away all contribute to greenhouse gas emissions. So does the consumption of goods such as clothing, electronics, and plastics. A large chunk of global greenhouse gas emissions are linked to private households. Our lifestyles have a profound impact on our planet. The wealthiest bear the greatest responsibility: the richest 1 per cent of the global population combined account for more greenhouse gas emissions than the poorest 50 per cent.

Based on various UN sources

Industry and Transport

Effects of Climate Change

Hotter temperatures

As greenhouse gas concentrations rise, so does the global surface temperature. The last decade, 2011-2020, is the warmest on record. Since the 1980s, each decade has been warmer than the previous one. Nearly all land areas are seeing more hot days and heat waves. Higher temperatures increase heat-related illnesses and make working outdoors more difficult. Wildfires start more easily and spread more rapidly when conditions are hotter. Temperatures in the Arctic have warmed at least twice as fast as the global average.

More severe storms

Destructive storms have become more intense and more frequent in many regions. As temperatures rise, more moisture evaporates, which exacerbates extreme rainfall and flooding, causing more destructive storms. The frequency and extent of tropical storms is also affected by the warming ocean. Cyclones, hurricanes, and typhoons feed on warm waters at the ocean surface. Such storms often destroy homes and communities, causing deaths and huge economic losses.

Increased drought

Climate change is changing water availability, making it scarcer in more regions. Global warming exacerbates water shortages in already water-stressed regions and is leading to an increased risk of agricultural droughts affecting crops, and ecological droughts increasing the vulnerability of ecosystems. Droughts can also stir destructive sand and dust storms that can move billions of tons of sand across continents. Deserts are expanding, reducing land for growing food. Many people now face the threat of not having enough water on a regular basis.

A warming, rising ocean

The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean. As the ocean warms, its volume increases since water expands as it gets warmer. Melting ice sheets also cause sea levels to rise, threatening coastal and island communities. In addition, the ocean absorbs carbon dioxide, keeping it from the atmosphere. But more carbon dioxide makes the ocean more acidic, which endangers marine life and coral reefs.

Loss of species

Climate change poses risks to the survival of species on land and in the ocean. These risks increase as temperatures climb. Exacerbated by climate change, the world is losing species at a rate 1,000 times greater than at any other time in recorded human history. One million species are at risk of becoming extinct within the next few decades. Forest fires, extreme weather, and invasive pests and diseases are among many threats related to climate change. Some species will be able to relocate and survive, but others will not.

Not enough food

Changes in the climate and increases in extreme weather events are among the reasons behind a global rise in hunger and poor nutrition. Fisheries, crops, and livestock may be destroyed or become less productive. With the ocean becoming more acidic, marine resources that feed billions of people are at risk. Changes in snow and ice cover in many Arctic regions have disrupted food supplies from herding, hunting, and fishing. Heat stress can diminish water and grasslands for grazing, causing declining crop yields and affecting livestock.

More health risks

Climate change is the single biggest health threat facing humanity. Climate impacts are already harming health, through air pollution, disease, extreme weather events, forced displacement, pressures on mental health, and increased hunger and poor nutrition in places where people cannot grow or find sufficient food. Every year, environmental factors take the lives of around 13 million people. Changing weather patterns are expanding diseases, and extreme weather events increase deaths and make it difficult for health care systems to keep up.

Poverty and displacement

Climate change increases the factors that put and keep people in poverty. Floods may sweep away urban slums, destroying homes and livelihoods. Heat can make it difficult to work in outdoor jobs. Water scarcity may affect crops. Over the past decade (2010–2019), weather-related events displaced an estimated 23.1 million people on average each year, leaving many more vulnerable to poverty. Most refugees come from countries that are most vulnerable and least ready to adapt to the impacts of climate change.

Learn more about...

Photocomposition: illustration of the Earth on fire

  • What is climate change?

Our climate 101 offers a quick take on the how and why of climate change.

Illustration of a plane turbine turning into a windmill

What is “net zero”, why is it important, and is the world on track to reach it?

Photocomposition: illustration with watering can pouring water into a plant

Initiatives for action

Read about global initiatives aimed at speeding up the pace of climate action.

Facts and figures

  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Advertisement

Supported by

Environmental Group to Study Effects of Artificially Cooling Earth

The Environmental Defense Fund, entering controversial territory, will spend millions of dollars examining the impact of reflecting sunlight into space as global warming worsens.

  • Share full article

A column of mist rises into the air from the deck of an old aircraft carrier.

By Christopher Flavelle

The Environmental Defense Fund will finance research into technologies that could artificially cool the planet, an idea that until recently was viewed as radical but is quickly gaining attention as global temperatures rise at alarming rates.

The group hopes to start issuing grants this fall, said Lisa Dilling, associate chief scientist at E.D.F., who is running the project. She said research would focus on estimating the likely effects in different parts of the world if governments were to deploy artificial cooling technologies.

The intent is to help inform policymakers, she said. “We are not in favor, period, of deployment. That’s not our goal here,” Dr. Dilling said. “Our goal is information, and solid, well-formulated science.”

The Environmental Defense Fund has previously expressed skepticism about techniques like these. But Dr. Dilling says the discussion about ways to cool the planet isn’t going away, regardless of opposition. “This is something that I don’t think we can just ignore,” she said.

The group will fund what is sometimes called solar radiation modification, or solar geoengineering, which involves reflecting more of the sun’s energy back into space. Possible techniques involve injecting aerosols into the stratosphere, or brightening clouds to make them more reflective.

Researchers believe such actions could temporarily reduce global temperatures, until society reduces greenhouse gas emissions by burning far less fossil fuel.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

As 12 months of record heat stack up, scientists unpack the impacts around the globe

Man sprays water in his face during heatwave May 2023 India

A new report by a team of international climate scientists shows the staggering amount of extreme heat days each country across the globe experienced last year, with the majority made more likely by human-induced climate change.

It comes as the world hits an alarming climate milestone, with data showing last month was the hottest May on record, marking what has now been 12 consecutive months of unprecedented global heat.

Australian National University professor Sarah Perkins-Kirkpatrick, who specialises in extreme heat, said it served as a stark "wake-up call" on how severe things were becoming.

"Last year was our hottest year on record and, to some extent, that was no surprise," Dr Perkins-Kirkpatrick said.

"But it's the fact that each month has stacked up on top of each other, and we've not had one month below the record, that has been quite surprising."

To better understand what has played out on the ground during those record months, a team of researchers from Climate Central, in collaboration with Red Cross Red Crescent Climate Centre and World Weather Attribution , analysed how many days of unusually hot weather each country experienced over the last year.

Using real-time climate attribution methods, they were also able to say how many days were made more likely by climate change.

It found human-caused climate change added 26 more days of extreme heat, on average, across all places in the world, to what there would have been without a warmed planet.

In some places, nearly half the year was spent under unusually hot conditions, including parts of South and Central America, and south-east Asia.

In Ecuador, for example, the average person experienced 180 days of extreme heat above their local level during the past year, according to the analysis.

Without the influence of climate change, it found that number would have been 10.

Climate Central vice-president for science Andrew Pershing said the figures illustrated the "huge burden" the burning of fossil fuels imposed on people around the world.

"Different countries are each having their own story, and that's one of the things we tried to highlight in the report," Dr Pershing said.

"Australia didn't have a particularly interesting summer this year, but in Africa it's just day after day after day of climate change just beating down on that continent."

Tow girls carrying water on their heads in Zimbabwe

An extreme heat day is one that is warmer than 90 per cent of all observed temperatures at the site from 1991-2020.

Dr Pershing said this was considered the point at which heat became particularly dangerous, with increases in temperature-related hospitalisations.

He said having the past 30 years as the baseline also meant the extreme heat was out of the ordinary even within the context of the climate people were used to.

While the report only looked at days of extreme heat, Dr Pershing said they had also seen the impact of global warming play out in intense rainfall and drought events.

In April, the desert city of Dubai recorded more than a year's worth of rainfall within 24 hours, flooding airport runways and motorways. And Mexico is currently in the grip of a severe heatwave.

How long will the record heat continue?

A look at the global air temperature over the past year shows just how easily records have been set, even when compared to our modern-day climate.

During the latest month, May, the average near-surface air temperature was 0.65 Celsius above the 1991-2020 baseline average, according to Copernicus's data, easily overtaking the previous record set in 2020.

When compared to pre-industrial levels (1850-1900), the month was 1.53C above average, breaching the Paris Agreement target of 1.5C for the 11th consecutive month.

And it is not just air temperatures that remain off the charts.

May 2024 also saw a continuation of record-warm global sea surface temperatures, extending the run of unprecedented oceanic heat to 14 months in a row — although sea ice around Antarctica has made a moderate recovery this year after record-low ice extent in 2023.

The hot May means the past 12 months are now also a record at 1.63C above pre-industrial levels, and ensures that, on its current trajectory, 2024 is now likely to surpass 2023 as the warmest year on record unless an unexpected rapid cooling occurs during the coming months.

While the recent global figures appear to indicate more than just a brief spike above the Paris mark, it is not likely to be permanent. 

The recent tumbling of climate records is partly due to an injection of warmth from the recent  El Niño, a pattern US National Ocean and Atmospheric Administration (NOAA) senior scientist Michael McPhaden is tracking.

"It takes time for the heat that is released from the ocean in the tropical Pacific to be distributed around the globe and show up as elevated global mean surface temperature," Dr McPhaden said.

"So there may be no relief in terms of global mean surface temperatures this calendar year.

"We may see it next year, as La Niña has had a chance to develop and take hold."

What's driving global heat?

Several factors have played into the Earth's record heat over the past year, some of which scientists are still trying to fully understand .

The onset of El Niño, in particular, has been flagged as one of the major year-to-year climate drivers that has helped boost global temperatures into record territory.

But climate scientists say by far the most significant contributor is rising greenhouse gas emissions, caused primarily by the burning of fossil fuels and deforestation, which have been responsible for approximately 1.1C of warming from 1850-1900 to 2021.

smoke leaves a chimney of a power station at night

"The escalator and climate change go in only one direction and it's up, so don't be surprised when more records are set," Dr McPhaden said.

Year on year, carbon emissions are still rising overall around the globe.

It has meant years of record heat have now become a frequent occurrence for the globe, while years of record cold are a rarity.

Each of the top 10 hottest years on record occurred in the past decade, while the coldest 10 on record all occurred more than 100 years ago — something Dr Perkins-Kirkpatrick points out should not happen.

"In a stable climate, record-hot years and record-cold years should statistically be occurring with the same probability, but that's not what's happening," she said.

"So the fact that these heat events just keep on being broken — they light up like Christmas trees every year — is just showing the underlying stress the global climate is in."

Adapting to a new climate reality

The latest line of heat records has been met with a response that climate scientists have made many times before. They say to stop records from tumbling the world needs to stop burning coal, oil, and natural gas.

"It's a, 'No shit Sherlock,' moment," Dr Perkins Kirkpatrick said.

"These records will continue to be broken for some time, particularly if we don't reduce our emissions quickly."

But Dr Perkins-Kirkpatrick said it had now reached a point where adaption to heat extremes was also necessary.

A woman wipes her face on a hot day in Mumbai

"We need to be really realistic and pragmatic of what we can achieve and in the time frame that we can achieve it," she said. 

"So we must also be looking at adaptation more seriously than we ever have before.

"And the longer we leave that, the worse that becomes."

To this end, Dr Pershing said while record hot months and years would not stop in a stable climate, their danger would become more manageable.

"Once we get to zero emissions, many parts of the climate system will stabilise within a few years, and temperature is one of them," he said.

"That's the thing to me that's really interesting, is that it's something we can then get used to.

"Then we can say, 'This is the main temperature of our city, this is the infrastructure we need,' rather than, 'This is our temperature,' and then, 'Oh heck, it's even warmer, and we have to change even more.'

"A more stable environment gives ourselves the opportunity to adapt and adjust."

  • X (formerly Twitter)

Related Stories

'uncharted territory': the world's extreme heat can't be fully explained, and scientists are worried.

A graphic of a thermometer and the globe indicating rising heat

How work, a cricket game and even just sitting at home can be catastrophic during a heatwave

Illustration of 45 year old woman struggling to sleep using purple and yellow colour tones.

BOM moves to 'La Niña watch' as ocean heat at record high for a year straight

Dramatic storm clouds over ocean in Flinders in Victoria land peninsula in bottom right-hand side

BOM's official winter outlook unpacked

Two people walking on the beach in Sydney with rainclouds looming above.

  • Climate Change
  • Earth Sciences
  • Extreme Weather Events
  • Weather Forecasts
  • Weather Phenomena
  • Weather Statistics
  • Weather Warnings

share this!

June 12, 2024 feature

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Study finds Arctic warming three-fold compared to global patterns

by Hannah Bird , Phys.org

Arctic warming threefold compared to global patterns

Global warming is an omnipresent issue, with widespread initiatives to draw down emissions and mitigate against the International Panel on Climate Change's worse-case scenario predictions of 3.2°C of warming by 2100 (relative to pre-Industrial levels). Current measurements stand at 1.1°C of warming across Earth, but polar regions are experiencing enhanced surface warming compared to the rest of the planet.

Quantifying this amplification of warming in the Arctic (>65°N) compared to global means, and the mechanisms behind this, is the subject of new research published in Nature Geoscience .

Dr. Wenyu Zhou, of the Pacific Northwest National Laboratory, U.S., and colleagues investigated previous reports of Arctic amplification factors of two to four since 1979, and determined a factor of three to be more likely based upon Earth's natural variability modulating temperature change .

"Natural variability is like noise," Dr. Zhou explains. "Even in the absence of external forcing (such as changes in greenhouse gases), the state of the climate system can fluctuate due to its coupled dynamics of ocean, atmosphere and land. Such variability can occur at various timescales (interannual, decadal, multi-decadal) depending on the corresponding 'mode.'

"Thus, the observed Arctic amplification consists of two parts—the part that is forced by external forcing and the part due to natural variability (which leads to the temporal anomaly in the degree of Arctic amplification).

"The alarming fourfold Arctic amplification in recent decades challenges our previous beliefs and is rarely reproduced by climate models ," Dr. Zhou says.

"It remains elusive whether this discrepancy reflects a temporary anomaly due to natural variability or a forced state of Arctic warming systematically underestimated by models."

To explore this, the research team compared observational data to model simulations, finding the difference in amplification factor between the two could be explained by natural variability, specifically certain ocean and climate patterns associated with the region. This includes the Interdecadal Pacific Oscillation and Arctic internal mode.

Arctic warming threefold compared to global patterns

The Interdecadal Pacific Oscillation is a 20- to 30-year pattern of climate and oceanographic change across both hemispheres of the Pacific Ocean where positive phases see warming to the east and cooling to the west, swapping during negative phases.

The negative phase is most important as it links to a higher frequency of La Niña events ( trade winds push warm water towards Asia resulting in the upwelling of cool, nutrient-rich water along the American coastline, often increasing the severity of hurricane season here), and has been found to have had a reductive effect on Arctic warming since 2000.

Meanwhile, the Arctic internal mode is determined to have enhanced warming since 2005. This relates to positive phases resulting in warming over the Kara Sea, with anti-cyclonic climate patterns bringing moisture to the area that encourages longwave radiation to be absorbed and warm the surface, leading to melting of sea ice.

A strong decline in sea ice results in ice-albedo feedbacks that lead to further warming. This process occurs due to melting sea ice reducing the amount of 'white' reflective surface for incoming solar radiation, instead increasing the surface area of comparatively 'dark' ocean to absorb radiation, therefore warming the ambient environment and causing further melting of sea ice that continues a runaway feedback loop.

Overall, across the study periods of 1970–2004 and 1980–2014, Arctic amplification was determined to be 2.09 and 3.98 respectively from observational data, changing to 2.28 and 3.33 with the removal of the Interdecadal Pacific Oscillation, and then 2.85 and 2.94 after additionally removing the effect of Arctic internal mode.

Consequently, a consistent amplification factor of three is identified, which matches that used in Coupled Model Intercomparison Projects (CMIP6), supporting its reliability for predicting future climate change.

"Here, we provide clear evidence to show that the fourfold Arctic amplification previously reported is an anomaly caused by dominant modes of natural variability and the degree of forced amplification is consistently around three throughout the historical period."

This research is important as it highlights the sensitivity of modeling climate change and the conclusions drawn to predict future patterns of global warming . Accounting for natural variability and identifying an amplification factor of three instead of four means future mitigation strategies may not have to be so severe in the decades to come.

Indeed, Dr. Zhou and colleagues suggest that the Arctic internal mode is likely to shift to a negative phase and Interdecadal Pacific Oscillation to a positive one in the coming decades, which would lead to a reduction in the Arctic amplification factor, perhaps even as low as two.

Journal information: Nature Geoscience

© 2024 Science X Network

Explore further

Feedback to editors

research report on global warming

The design of a photonic alloy with topological properties

8 minutes ago

research report on global warming

Much of the Nord Stream gas remained in the sea after 2022 explosion, finds study

3 hours ago

research report on global warming

A railroad of cells: Computer simulations explain cell movement

research report on global warming

Ohio train derailment caused chemical pollution falling to Earth's surface across the US and beyond, study reveals

4 hours ago

research report on global warming

Ultrasound beam triggers 'nanodroplets' to deliver drugs at exactly the right spot

7 hours ago

research report on global warming

Look to women for sustainable livestock farming bordering the Amazon rainforest, says study

15 hours ago

research report on global warming

New study finds at least 1 in 4 US residential yards exceeds new EPA lead soil level guideline

research report on global warming

Biologists take closer look at stress response in cells

16 hours ago

research report on global warming

City sprawl is now large enough to sway global warming over land

research report on global warming

New theory broadens phase transition exploration

17 hours ago

Relevant PhysicsForums posts

Should we be planting more trees.

18 hours ago

The Secrets of Prof. Verschure's Rosetta Stones

Jun 13, 2024

Earthquake precursors associated with the Turkey earthquakes

Is it possible to transform an electric thunderstorm into an emp storm.

Jun 4, 2024

Jacchia Atmospheric Model

Jun 3, 2024

Iceland warming up again - quakes swarming

More from Earth Sciences

Related Stories

research report on global warming

Study finds natural climate variability impacts Arctic and global warming

Jun 10, 2024

research report on global warming

Unlocking Arctic mysteries: How melting ice shapes our climate

Apr 4, 2024

research report on global warming

Arctic precipitation rates to double as temperatures rise, finds new study

Apr 8, 2024

research report on global warming

Atmospheric scientists link Arctic sea ice loss to strong El Niño events

Apr 1, 2024

research report on global warming

Study explores impacts of Arctic warming on daily weather patterns in the US

Mar 11, 2024

research report on global warming

Arctic amplification: New research reveals how surface types play a role

May 9, 2023

Recommended for you

research report on global warming

Study reveals huge increase in global economic cost of invasive mosquitoes and diseases they transmit

19 hours ago

research report on global warming

The year 1740 was the coldest in Central Europe in 600 years: Study seeks to answer why

Jun 18, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

New study finds Earth warming at record rate, but no evidence of climate change accelerating

FILE - A woman is silhouetted against the setting sun as triple-digit heat indexes continue in the Midwest, Aug. 20, 2023, in Kansas City, Mo. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Charlie Riedel, File)

A woman is silhouetted against the setting sun as triple-digit heat indexes continue in the Midwest, Aug. 20, 2023, in Kansas City, Mo. (AP Photo/Charlie Riedel)

FILE - A woman is silhouetted against the setting sun as triple-digit heat indexes continue in the Midwest, Aug. 20, 2023, in Kansas City, Mo. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Charlie Riedel, File)

FILE - A woman is silhouetted against the setting sun as triple-digit heat indexes continue in the Midwest, Aug. 20, 2023, in Kansas City, Mo. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Charlie Riedel, File)

  • Copy Link copied

FILE - People suffering from heat related ailments crowd the district hospital in Ballia, Uttar Pradesh state, India, June 20, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Rajesh Kumar Singh, File)

FILE - Braxton Hicks, 7, of Livingston, Texas, holds his face to a portable fan to cool off during the DYB, formerly Dixie Youth Baseball, Little League tournament in Ruston, La., Aug. 9, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Gerald Herbert, File)

FILE - A scuba diver swims near bleached coral, left, and healthy coral at the Flower Garden Banks National Marine Sanctuary, off the coast of Galveston, Texas, Sept. 15, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/LM Otero, File)

FILE - A man takes a shower on a beach on a hot day in Ostia, near Rome, Aug. 23, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Gregorio Borgia, File)

FILE - Taylor Swift fans wait for the doors of Nilton Santos Olympic stadium to open for her Eras Tour concert amid a heat wave in Rio de Janeiro, Brazil, Nov. 18, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Silvia Izquierdo, File)

FILE - A girl walks holding hands with a man carrying an electric fan on his back on a hot evening in Bucharest, Romania, July 25, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Andreea Alexandru, File)

research report on global warming

The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated.

The group of 57 scientists from around the world used United Nations-approved methods to examine what’s behind last year’s deadly burst of heat . They said even with a faster warming rate they don’t see evidence of significant acceleration in human-caused climate change beyond increased fossil fuel burning.

Last year’s record temperatures were so unusual that scientists have been debating what’s behind the big jump and whether climate change is accelerating or if other factors are in play.

“If you look at this world accelerating or going through a big tipping point, things aren’t doing that,” study lead author Piers Forster, a Leeds University climate scientist, said. “Things are increasing in temperature and getting worse in sort of exactly the way we predicted.”

FILE - People suffering from heat related ailments crowd the district hospital in Ballia, Uttar Pradesh state, India, June 20, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Rajesh Kumar Singh, File)

People suffering from heat related ailments crowd the district hospital in Ballia, Uttar Pradesh state, India, June 20, 2023. (AP Photo/Rajesh Kumar Singh)

It’s pretty much explained by the buildup of carbon dioxide from rising fossil fuel use, he and a co-author said.

Last year the rate of warming hit 0.26 degrees Celsius (0.47 degrees Fahrenheit) per decade — up from 0.25 degrees Celsius (0.45 degrees Fahrenheit) the year before. That’s not a significant difference, though it does make this year’s rate the highest ever, Forster said.

Sumini, a leader of a female ranger group, uses a machete to clear the way during a forest patrol in Damaran Baru, Aceh province, Indonesia, Tuesday, May 7, 2024. The patrol group was started by Sumini, who witnessed the devastating effects of deforestation on her local village. (AP Photo/Dita Alangkara)

Still, outside scientists said this report highlights an ever more alarming situation.

“Choosing to act on climate has become a political talking point but this report should be a reminder to people that in fact it is fundamentally a choice to save human lives,” said University of Wisconsin climate scientist Andrea Dutton, who wasn’t part of the international study team. “To me, that is something worth fighting for.”

FILE - A scuba diver swims near bleached coral, left, and healthy coral at the Flower Garden Banks National Marine Sanctuary, off the coast of Galveston, Texas, Sept. 15, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/LM Otero, File)

A scuba diver swims near bleached coral, left, and healthy coral at the Flower Garden Banks National Marine Sanctuary, off the coast of Galveston, Texas, Sept. 15, 2023. (AP Photo/LM Otero)

The team of authors — formed to provide annual scientific updates between the every seven- to eight-year major U.N. scientific assessments — determined last year was 1.43 degrees Celsius warmer than the 1850 to 1900 average with 1.31 degrees of that coming from human activity. The other 8% of the warming is due mostly to El Nino , the natural and temporary warming of the central Pacific that changes weather worldwide and also a freak warming along the Atlantic and just other weather randomness.

On a larger 10-year time frame, which scientists prefer to single years, the world has warmed about 1.19 degrees Celsius (2.14 degrees Fahrenheit) since pre-industrial times, the report in the journal Earth System Science Data found.

The report also said that as the world keeps using coal, oil and natural gas, Earth is likely to reach the point in 4.5 years that it can no longer avoid crossing the internationally accepted threshold for warming: 1.5 degrees Celsius (2.7 degrees Fahrenheit ).

That fits with earlier studies projecting Earth being committed or stuck to at least 1.5 degrees by early 2029 if emission trajectories don’t change. The actual hitting of 1.5 degrees could be years later, but it would be inevitable if all that carbon is used, Forster said.

It’s not the end of the world or humanity if temperatures blow past the 1.5 limit, but it will be quite bad, scientists said. Past U.N. studies show massive changes to Earth’s ecosystem are more likely to kick in between 1.5 and 2 degrees Celsius of warming, including eventual loss of the planet’s coral reefs, Arctic sea ice, species of plants and animals — along with nastier extreme weather events that kill people.

FILE - Taylor Swift fans wait for the doors of Nilton Santos Olympic stadium to open for her Eras Tour concert amid a heat wave in Rio de Janeiro, Brazil, Nov. 18, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Silvia Izquierdo, File)

Taylor Swift fans wait for the doors of Nilton Santos Olympic stadium to open for her Eras Tour concert amid a heat wave in Rio de Janeiro, Brazil, Nov. 18, 2023. (AP Photo/Silvia Izquierdo)

Last year’s temperature rise was more than just a little jump. It was especially unusual in September, said study co-author Sonia Seneviratne, head of land-climate dynamics at ETH Zurich, a Swiss university.

The year was within the range of what was predicted, albeit it was at the upper edge of the range, Seneviratne said.

“Acceleration if it were to happen would be even worse, like hitting a global tipping point, it would be probably the worst scenario,” Seneviratne said. “But what is happening is already extremely bad and it is having major impacts already now. We are in the middle of a crisis.”

University of Michigan environment dean Jonathan Overpeck and Berkeley Earth climate scientist Zeke Hausfather, neither of whom were part of the study, said they still see acceleration. Hausfather pointed out the rate of warming is considerably higher than 0.18 degrees Celsius (0.32 Fahrenheit) per decade of warming that it was between 1970 and 2010.

Scientists had theorized a few explanations for the massive jump in September , which Hausfather called “gobsmacking.” Wednesday’s report didn’t find enough warming from other potential causes. The report said the reduction of sulfur pollution from shipping — which had been providing some cooling to the atmosphere — was overwhelmed last year by carbon particles put in the air from Canadian wildfires.

FILE - A girl walks holding hands with a man carrying an electric fan on his back on a hot evening in Bucharest, Romania, July 25, 2023. The rate Earth is warming hit an all-time high in 2023 with 92% of last year’s surprising record-shattering heat caused by humans, top scientists calculated. (AP Photo/Andreea Alexandru, File)

A girl walks holding hands with a man carrying an electric fan on his back on a hot evening in Bucharest, Romania, July 25, 2023. (AP Photo/Andreea Alexandru)

The report also said an undersea volcano that injected massive amounts of heat-trapping water vapor into the atmosphere also spewed cooling particles with both forces pretty much canceling each other out.

Texas Tech climate scientist and chief scientist at the Nature Conservancy Katharine Hayhoe said “the future is in our hands. It’s us — not physics, but humans — who will determine how quickly the world warms and by how much.”

Read more of AP’s climate coverage at http://www.apnews.com/climate-and-environment

Follow Seth Borenstein on X at @borenbears

The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org .

SETH BORENSTEIN

IMAGES

  1. Global warming

    research report on global warming

  2. Global Warming Evidence: 2007 Report Compared to 2013 (Infographic

    research report on global warming

  3. The Effect and Strategy of Global Warming

    research report on global warming

  4. Shocking Climate Change Report Presents New Info on Global Warming

    research report on global warming

  5. Climate Change is Happening Now

    research report on global warming

  6. Data-driven predictions of the time remaining until critical global

    research report on global warming

COMMENTS

  1. Global Warming: Causes, Effects and Solutions

    The paper introduces global warming, elaborates its causes and hazards and presents some solutions to solve this hot issue. Above all, alternative energy sources (solar, wind, hydro, geothermal ...

  2. Research Guides: Climate Change

    The Production Gap Report — first launched in 2019 — tracks the discrepancy between governments' planned fossil fuel production and global production levels consistent with limiting warming to 1.5°C or 2°C. The 2023 report finds that governments plan to produce around 110% more fossil fuels in 2030 than would be consistent with limiting ...

  3. 10 Big Findings from the 2023 IPCC Report on Climate Change

    While the window to address the climate crisis is rapidly closing, the IPCC affirms that we can still secure a safe, livable future. Here are 10 key findings you need to know: 1. Human-induced global warming of 1.1 degrees C has spurred changes to the Earth's climate that are unprecedented in recent human history.

  4. Climate change widespread, rapid, and intensifying

    The report projects that in the coming decades climate changes will increase in all regions. For 1.5°C of global warming, there will be increasing heat waves, longer warm seasons and shorter cold seasons. At 2°C of global warming, heat extremes would more often reach critical tolerance thresholds for agriculture and health, the report shows ...

  5. Exceeding 1.5°C global warming could trigger multiple ...

    In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty." V.

  6. Nature Climate Change

    Nature Climate Change is dedicated to publishing the most significant research across the physical and social sciences on the impacts of global climate change and its implications for the economy ...

  7. The Latest IPCC Report: What is it and why does it matter?

    The IPCC is the scientific group assembled by the United Nations to monitor and assess all global science related to climate change. Every IPCC report focuses on different aspects of climate change. This latest report is the IPCC's 6 th Synthesis report. It updates and compiles in one report findings from all the reports in the IPCC's sixth ...

  8. IPCC climate report: Earth is warmer than it's been in ...

    Hotting up. Earth's global surface temperature has increased by around 1.1 °C compared with the average in 1850-1900 — a level that hasn't been witnessed since 125,000 years ago, before ...

  9. Climate Reports

    The report examines the implications of the latest data and scientific research on the state of the global climate for sustainable development, highlighting how the climate is already changing in ...

  10. Climate Change 2023: Synthesis Report

    The much-anticipated Climate Change 2023: Synthesis Report is based on years of work by hundreds of scientists during the Intergovernmental Panel on Climate Change's (IPCC) sixth assessment cycle which began in 2015. The report provides the main scientific input to COP28 and the Global Stocktake at the end of this year, when countries will review progress towards the Paris Agreement goals.

  11. After 40 years, researchers finally see Earth's climate ...

    Bounds on Earth's climate sensitivity—how far temperatures will eventually rise for a doubling of atmospheric carbon dioxide—did not narrow for 40 years. Using new lines of evidence, a major study now says substantial warming is likely. Second, the team probed individual climate feedbacks. Some of these, like the warming effect of water ...

  12. Home

    Current news and data streams about global warming and climate change from NASA. NASA. Global Climate Change. Vital Signs of the Planet ... NASA provides detailed climate data and research to the world. Earth Science in Action People across the world using NASA data to solve big problems right here on Earth. More to Explore Ask NASA Climate ...

  13. A review of the global climate change impacts, adaptation, and

    So, according to the report, around 0.1% of global deaths. ... With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. ... Visualizing the knowledge outburst in global research on COVID-19. Scientometrics ...

  14. Exxon scientists predicted global warming with 'shocking skill and

    The researchers report that Exxon scientists correctly dismissed the possibility of a coming ice age, accurately predicted that human-caused global warming would first be detectable in the year 2000, plus or minus five years, and reasonably estimated how much CO 2 would lead to dangerous warming.

  15. Climate Change: Evidence and Causes: Update 2020

    Evidence and Causes: Update 2020. (2020) Download Free PDF. Read Free Online. Buy Paperback (pack of 5): $5.00. Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with ...

  16. Globally representative evidence on the actual and perceived support

    IPCC Special Report on Global warming of 1.5 ... Branco, A. et al. Emissions Database for Global Atmospheric Research, version v7.0_ft_2021 (European Commission, 2022).

  17. Fifth National Climate Assessment

    The Fifth National Climate Assessment is the US Government's preeminent report on climate change impacts, risks, and responses. ... US Global Change Research Program / ICF Chapter Authors Christopher W. Avery, ... Global warming levels refer to warming since preindustrial temperature conditions, defined as the 1851-1900 average. ...

  18. Climate Change Concerns Make Many Around the ...

    For this report, we conducted nationally representative Pew Research Center surveys of 16,254 adults from March 12 to May 26, 2021, in 16 advanced economies. ... In Germany, for instance, the share that is "very concerned" about the personal ramifications of global warming has increased 19 percentage points since 2015 (from 18% to 37%). ...

  19. Scholarly Articles on Global Warming and Climate Change

    Global Warming. Long-term warming trends and increases in extreme weather events have the potential to impact all life on Earth. Even though at least 97 percent of climate scientists agree that human activities have contributed to rising global temperatures, the predominance and causes of these phenomena continue to be debated and many Americans deny global warming.

  20. What evidence exists that Earth is warming and that humans are the main

    Full story. We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth's natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures.

  21. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  22. Climate change and ecosystems: threats, opportunities and solutions

    Hoegh-Guldberg O et al. 2018 Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

  23. Rate of global warming caused by humans at an all-time high, say

    The second annual Indicators of Global Climate Change report, which is led by the University of Leeds, reveals that human-induced warming has risen to 1.19 °C over the past decade (2014-2023 ...

  24. How climate change is hitting Europe: three graphics reveal ...

    Global warming is costing lives, deepening health inequality and driving the spread of disease-carrying ticks and parasites across Europe, according to a major report.

  25. Causes and Effects of Climate Change

    A warming, rising ocean The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean.

  26. Environmental Group to Study Effects of Artificially Cooling Earth

    The Environmental Defense Fund, entering controversial territory, will spend millions of dollars examining the impact of reflecting sunlight into space as global warming worsens.

  27. As 12 months of record heat stack up, scientists unpack the impacts

    As the world hits an alarming climate milestone, a new report by a US research team shows the staggering amount of extreme heat days each country experienced last year, with the majority made more ...

  28. Study finds Arctic warming three-fold compared to global patterns

    Quantifying this amplification of warming in the Arctic (>65°N) compared to global means, and the mechanisms behind this, is the subject of new research published in Nature Geoscience.. Dr. Wenyu ...

  29. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  30. Earth warming at record rate, but no evidence of climate change

    The rate Earth is warming hit an all-time high in 2023 with 92% of last year's surprising record-shattering heat caused by humans, top scientists calculated.. The group of 57 scientists from around the world used United Nations-approved methods to examine what's behind last year's deadly burst of heat.They said even with a faster warming rate they don't see evidence of significant ...