## Algebra 2 Common Core

By hall, prentice, chapter 3 - linear systems - 3-2 solving systems algebraically - practice and problem-solving exercises - page 146: 23, work step by step, update this answer.

You can help us out by revising, improving and updating this answer.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.

## math15fun.com

Chapter 3 practice problems, chapter 3: functions, 3.1 relations and functions.

MAC1105 3_1 Practice Problems

MAC1105 3_1 Practice Problems Solutions

## 3.2 Properties of a Function’s Graph

MAC1105 3_2 Practice Problems

MAC1105 3_2 Practice Problems Solutions

## 3.3 Graphs of Basic Functions; Piecewise Functions

MAC1105 3_3 Practice Problems

MAC1105 3_3 Practice Problems Solutions

## 3.4 Transformations of Functions

MAC1105 3_4 Practice Problems

MAC1105 3_4 Practice Problems Solutions

## 3.5 The Algebra of Functions; Composite Functions

MAC1105 3_5 Practice Problems

MAC1105 3_5 Practice Problems Solutions

## 3.6 One-to-one Functions; Inverse Functions

MAC1105 3_6 Practice Problems

MAC1105 3_6 Practice Problems Solutions

## The website of Professor Amanda Sartor

• Introduction
• 1.1 Use the Language of Algebra
• 1.2 Integers
• 1.3 Fractions
• 1.4 Decimals
• 1.5 Properties of Real Numbers
• Key Concepts

## Review Exercises

Practice test.

• 2.1 Use a General Strategy to Solve Linear Equations
• 2.2 Use a Problem Solving Strategy
• 2.3 Solve a Formula for a Specific Variable
• 2.4 Solve Mixture and Uniform Motion Applications
• 2.5 Solve Linear Inequalities
• 2.6 Solve Compound Inequalities
• 2.7 Solve Absolute Value Inequalities
• 3.1 Graph Linear Equations in Two Variables
• 3.2 Slope of a Line
• 3.3 Find the Equation of a Line
• 3.4 Graph Linear Inequalities in Two Variables
• 3.5 Relations and Functions
• 3.6 Graphs of Functions
• 4.1 Solve Systems of Linear Equations with Two Variables
• 4.2 Solve Applications with Systems of Equations
• 4.3 Solve Mixture Applications with Systems of Equations
• 4.4 Solve Systems of Equations with Three Variables
• 4.5 Solve Systems of Equations Using Matrices
• 4.6 Solve Systems of Equations Using Determinants
• 4.7 Graphing Systems of Linear Inequalities
• 5.1 Add and Subtract Polynomials
• 5.2 Properties of Exponents and Scientific Notation
• 5.3 Multiply Polynomials
• 5.4 Dividing Polynomials
• Introduction to Factoring
• 6.1 Greatest Common Factor and Factor by Grouping
• 6.2 Factor Trinomials
• 6.3 Factor Special Products
• 6.4 General Strategy for Factoring Polynomials
• 6.5 Polynomial Equations
• 7.1 Multiply and Divide Rational Expressions
• 7.2 Add and Subtract Rational Expressions
• 7.3 Simplify Complex Rational Expressions
• 7.4 Solve Rational Equations
• 7.5 Solve Applications with Rational Equations
• 7.6 Solve Rational Inequalities
• 8.1 Simplify Expressions with Roots
• 8.3 Simplify Rational Exponents
• 8.7 Use Radicals in Functions
• 8.8 Use the Complex Number System
• 9.1 Solve Quadratic Equations Using the Square Root Property
• 9.2 Solve Quadratic Equations by Completing the Square
• 9.5 Solve Applications of Quadratic Equations
• 9.6 Graph Quadratic Functions Using Properties
• 9.7 Graph Quadratic Functions Using Transformations
• 10.1 Finding Composite and Inverse Functions
• 10.2 Evaluate and Graph Exponential Functions
• 10.3 Evaluate and Graph Logarithmic Functions
• 10.4 Use the Properties of Logarithms
• 10.5 Solve Exponential and Logarithmic Equations
• 11.1 Distance and Midpoint Formulas; Circles
• 11.2 Parabolas
• 11.3 Ellipses
• 11.4 Hyperbolas
• 11.5 Solve Systems of Nonlinear Equations
• 12.1 Sequences
• 12.2 Arithmetic Sequences
• 12.3 Geometric Sequences and Series
• 12.4 Binomial Theorem

ⓐ yes, yes ⓑ yes, yes

ⓐ no, no ⓑ yes, yes

x -intercept: ( 2 , 0 ) , ( 2 , 0 ) , y -intercept: ( 0 , −2 ) ( 0 , −2 )

x -intercept: ( 3 , 0 ) , ( 3 , 0 ) , y -intercept: ( 0 , 2 ) ( 0 , 2 )

x -intercept: ( 4 , 0 ) , ( 4 , 0 ) , y -intercept: ( 0 , 12 ) ( 0 , 12 )

x -intercept: ( 8 , 0 ) , ( 8 , 0 ) , y -intercept: ( 0 , 2 ) ( 0 , 2 )

− 4 3 − 4 3

− 3 5 − 3 5

ⓐ m = 2 5 ; ( 0 , −1 ) m = 2 5 ; ( 0 , −1 ) ⓑ m = − 1 4 ; ( 0 , 2 ) m = − 1 4 ; ( 0 , 2 )

ⓐ m = − 4 3 ; ( 0 , 1 ) m = − 4 3 ; ( 0 , 1 ) ⓑ m = − 3 2 ; ( 0 , 6 ) m = − 3 2 ; ( 0 , 6 )

ⓐ intercepts ⓑ horizontal line ⓒ slope-intercept ⓓ vertical line

ⓐ vertical line ⓑ slope-intercept ⓒ horizontal line ⓓ intercepts

ⓐ 50 inches ⓑ 66 inches ⓒ The slope, 2, means that the height, h , increases by 2 inches when the shoe size, s , increases by 1. The h -intercept means that when the shoe size is 0, the height is 50 inches. ⓓ

ⓐ 40 degrees ⓑ 65 degrees ⓒ The slope, 1 4 , 1 4 , means that the temperature Fahrenheit ( F ) increases 1 degree when the number of chirps, n , increases by 4. The T -intercept means that when the number of chirps is 0, the temperature is 40°. ⓓ

ⓐ \$25 ⓑ \$85 ⓒ The slope, 4, means that the weekly cost, C , increases by \$4 when the number of pizzas sold, p, increases by 1. The C -intercept means that when the number of pizzas sold is 0, the weekly cost is \$25. ⓓ

ⓐ \$35 ⓑ \$170 ⓒ The slope, 1.8 , 1.8 , means that the weekly cost, C , increases by \$ 1.80 \$ 1.80 when the number of invitations, n , increases by 1. The C -intercept means that when the number of invitations is 0, the weekly cost is \$35. ⓓ

ⓐ parallel ⓑ not parallel; same line

ⓐ parallel ⓑ parallel

ⓐ perpendicular ⓑ not perpendicular

y = 2 5 x + 4 y = 2 5 x + 4

y = − x − 3 y = − x − 3

y = 3 5 x + 1 y = 3 5 x + 1

y = 4 3 x − 5 y = 4 3 x − 5

y = − 2 5 x − 1 y = − 2 5 x − 1

y = − 3 4 x − 4 y = − 3 4 x − 4

y = 8 y = 8

y = 4 y = 4

y = 1 3 x − 10 3 y = 1 3 x − 10 3

y = − 2 5 x − 23 5 y = − 2 5 x − 23 5

x = 5 x = 5

x = −4 x = −4

y = 3 x − 10 y = 3 x − 10

y = 1 2 x + 1 y = 1 2 x + 1

y = − 1 3 x + 10 3 y = − 1 3 x + 10 3

y = −2 x + 16 y = −2 x + 16

y = −5 y = −5

y = −1 y = −1

x = −5 x = −5

ⓐ yes ⓑ yes ⓒ yes ⓓ yes ⓔ no

ⓐ yes ⓑ yes ⓒ no ⓓ no ⓔ yes

y ≥ −2 x + 3 y ≥ −2 x + 3

y ≤ 1 2 x − 4 y ≤ 1 2 x − 4

x − 4 y ≤ 8 x − 4 y ≤ 8

3 x − y ≥ 6 3 x − y ≥ 6

All points in the shaded region and on the boundary line, represent the solutions to y > 5 2 x − 4 . y > 5 2 x − 4 .

All points in the shaded region, but not those on the boundary line, represent the solutions to y < 2 3 x − 5 . y < 2 3 x − 5 .

All points in the shaded region, but not those on the boundary line, represent the solutions to 2 x − 3 y < 6 . 2 x − 3 y < 6 .

All points in the shaded region, but not those on the boundary line, represent the solutions to 2 x − y > 3 . 2 x − y > 3 .

All points in the shaded region, but not those on the boundary line, represent the solutions to y > − 3 x . y > − 3 x .

All points in the shaded region and on the boundary line, represent the solutions to y ≥ −2 x . y ≥ −2 x .

All points in the shaded region, but not those on the boundary line, represent the solutions to y < 5 . y < 5 .

All points in the shaded region and on the boundary line represent the solutions to y ≤ −1 . y ≤ −1 .

ⓐ 10 x + 13 y ≥ 260 10 x + 13 y ≥ 260 ⓑ

ⓐ 10 x + 17.5 y ≥ 280 10 x + 17.5 y ≥ 280 ⓑ

ⓐ { 1 , 2 , 3 , 4 , 5 } { 1 , 2 , 3 , 4 , 5 } ⓑ { 1 , 8 , 27 , 64 , 125 } { 1 , 8 , 27 , 64 , 125 }

ⓐ { 1 , 2 , 3 , 4 , 5 } { 1 , 2 , 3 , 4 , 5 } ⓑ { 3 , 6 , 9 , 12 , 15 } { 3 , 6 , 9 , 12 , 15 }

ⓐ (Khanh Nguyen, kn68413), (Abigail Brown, ab56781), (Sumantha Mishal, sm32479), (Jose Hern and ez, jh47983) ⓑ {Khanh Nguyen, Abigail Brown, Sumantha Mishal, Jose Hern and ez} ⓒ {kn68413, ab56781, sm32479, jh47983}

ⓐ (Maria, November 6), (Arm and o, January 18), (Cynthia, December 8), (Kelly, March 15), (Rachel, November 6) ⓑ {Maria, Arm and o, Cynthia, Kelly, Rachel} ⓒ {November 6, January 18, December 8, March 15}

ⓐ ( −3 , 3 ) , ( −2 , 2 ) , ( −1 , 0 ) , ( −3 , 3 ) , ( −2 , 2 ) , ( −1 , 0 ) , ( 0 , −1 ) , ( 2 , −2 ) , ( 4 , −4 ) ( 0 , −1 ) , ( 2 , −2 ) , ( 4 , −4 ) ⓑ { −3 , −2 , −1 , 0 , 2 , 4 } { −3 , −2 , −1 , 0 , 2 , 4 } ⓒ { 3 , 2 , 0 , −1 , −2 , −4 } { 3 , 2 , 0 , −1 , −2 , −4 }

ⓐ ( −3 , 0 ) , ( −3 , 5 ) , ( −3 , −6 ) , ( −3 , 0 ) , ( −3 , 5 ) , ( −3 , −6 ) , ( −1 , −2 ) , ( 1 , 2 ) , ( 4 , −4 ) ( −1 , −2 ) , ( 1 , 2 ) , ( 4 , −4 ) ⓑ { −3 , −1 , 1 , 4 } { −3 , −1 , 1 , 4 } ⓒ { −6 , 0 , 5 , −2 , 2 , −4 } { −6 , 0 , 5 , −2 , 2 , −4 }

ⓐ Yes; { −3 , −2 , −1 , 0 , 1 , 2 , 3 } ; { −3 , −2 , −1 , 0 , 1 , 2 , 3 } ; { −6 , −4 , −2 , 0 , 2 , 4 , 6 } { −6 , −4 , −2 , 0 , 2 , 4 , 6 } ⓑ No; { 0 , 2 , 4 , 8 } ; { 0 , 2 , 4 , 8 } ; { −4 , −2 , −1 , 0 , 1 , 2 , 4 } { −4 , −2 , −1 , 0 , 1 , 2 , 4 }

ⓐ No; { 0 , 1 , 8 , 27 } ; { 0 , 1 , 8 , 27 } ; { −3 , −2 , −1 , 0 , 2 , 2 , 3 } { −3 , −2 , −1 , 0 , 2 , 2 , 3 } ⓑ Yes; { 7 , −5 , 8 , 0 , −6 , −2 , −1 } ; { 7 , −5 , 8 , 0 , −6 , −2 , −1 } ; { −3 , −4 , 0 , 4 , 2 , 3 } { −3 , −4 , 0 , 4 , 2 , 3 }

ⓐ no ⓑ {NBC, HGTV, HBO} ⓒ {Ellen Degeneres Show, Law and Order, Tonight Show, Property Brothers, House Hunters, Love it or List it, Game of Thrones, True Detective, Sesame Street}

ⓐ No ⓑ {Neal, Krystal, Kelvin, George, Christa, Mike} ⓒ {123-567-4839 work, 231-378-5941 cell, 743-469-9731 cell, 567-534-2970 work, 684-369-7231 cell, 798-367-8541 cell, 639-847-6971 cell}

ⓐ yes ⓑ no ⓒ yes

ⓐ no ⓑ yes ⓒ yes

ⓐ f ( 3 ) = 22 f ( 3 ) = 22 ⓑ f ( −1 ) = 6 f ( −1 ) = 6 ⓒ f ( t ) = 3 t 2 − 2 t − 1 f ( t ) = 3 t 2 − 2 t − 1

ⓐ ( 2 ) = 13 ( 2 ) = 13 ⓑ f ( −3 ) = 3 f ( −3 ) = 3 ⓒ f ( h ) = 2 h 2 + 4 h − 3 f ( h ) = 2 h 2 + 4 h − 3

ⓐ 4 m 2 − 7 4 m 2 − 7 ⓑ 4 x − 19 4 x − 19 ⓒ x − 12 x − 12

ⓐ 2 k 2 + 1 2 k 2 + 1 ⓑ 2 x + 3 2 x + 3 ⓒ 2 x + 4 2 x + 4

ⓐ t IND; N DEP ⓑ 205; the number of unread emails in Bryan’s account on the seventh day.

ⓐ t IND; N DEP ⓑ 460; the number of unread emails in Anthony’s account on the fourteenth day

The domain is [ −5 , 1 ] . [ −5 , 1 ] . The range is [ −4 , 2 ] . [ −4 , 2 ] .

The domain is [ −2 , 4 ] . [ −2 , 4 ] . The range is [ −5 , 3 ] . [ −5 , 3 ] .

ⓐ f ( 0 ) = 0 f ( 0 ) = 0 ⓑ f = ( π 2 ) = 2 f = ( π 2 ) = 2 ⓒ f = ( −3 π 2 ) = 2 f = ( −3 π 2 ) = 2 ⓓ f ( x ) = 0 f ( x ) = 0 for x = −2 π , − π , 0 , π , 2 π x = −2 π , − π , 0 , π , 2 π ⓔ ( −2 π , 0 ) , ( − π , 0 ) , ( 0 , 0 ) , ( π , 0 ) , ( 2 π , 0 ) ( −2 π , 0 ) , ( − π , 0 ) , ( 0 , 0 ) , ( π , 0 ) , ( 2 π , 0 ) ⓕ ( 0 , 0 ) ( 0 , 0 ) ⓖ [ −2 π , 2 π ] [ −2 π , 2 π ] ⓗ [ −2 , 2 ] [ −2 , 2 ]

ⓐ f ( 0 ) = 1 f ( 0 ) = 1 ⓑ f ( π ) = −1 f ( π ) = −1 ⓒ f ( − π ) = −1 f ( − π ) = −1 ⓓ f ( x ) = 0 f ( x ) = 0 for x = − 3 π 2 , − π 2 , π 2 , 3 π 2 x = − 3 π 2 , − π 2 , π 2 , 3 π 2 ⓔ ( −2 pi , 0 ) , ( −pi , 0 ) , ( 0 , 0 ) , ( pi , 0 ) , ( 2 pi , 0 ) ( −2 pi , 0 ) , ( −pi , 0 ) , ( 0 , 0 ) , ( pi , 0 ) , ( 2 pi , 0 ) ⓕ ( 0 , 1 ) ( 0 , 1 ) ⓖ [ −2 pi , 2 pi ] [ −2 pi , 2 pi ] ⓗ [ −1 , 1 ] [ −1 , 1 ]

## Section 3.1 Exercises

ⓐ A: yes, B: no, C: yes, D: yes ⓑ A: yes, B: no, C: yes, D: yes

ⓐ A: yes, B: yes, C: yes, D: no ⓑ A: yes, B: yes, C: yes, D: no

( 3 , 0 ) , ( 0 , 3 ) ( 3 , 0 ) , ( 0 , 3 )

( 5 , 0 ) , ( 0 , −5 ) ( 5 , 0 ) , ( 0 , −5 )

( 2 , 0 ) , ( 0 , 6 ) ( 2 , 0 ) , ( 0 , 6 )

( 2 , 0 ) , ( 0 , −8 ) ( 2 , 0 ) , ( 0 , −8 )

( 5 , 0 ) , ( 0 , 2 ) ( 5 , 0 ) , ( 0 , 2 )

## Section 3.2 Exercises

− 1 3 − 1 3

− 5 2 − 5 2

− 8 7 − 8 7

m = −7 ; ( 0 , 3 ) m = −7 ; ( 0 , 3 )

m = −3 ; ( 0 , 5 ) m = −3 ; ( 0 , 5 )

m = − 3 2 ; ( 0 , 3 ) m = − 3 2 ; ( 0 , 3 )

m = 5 2 ; ( 0 , −3 ) m = 5 2 ; ( 0 , −3 )

vertical line

slope-intercept

ⓐ \$31 ⓑ \$52 ⓒ The slope, 1.75 , 1.75 , means that the payment, P , increases by \$ 1.75 \$ 1.75 when the number of units of water used, w, increases by 1. The P -intercept means that when the number units of water Tuyet used is 0, the payment is \$31. ⓓ

ⓐ \$42 ⓑ \$168.50 ⓒ The slope, 0.575 means that the amount he is reimbursed, R , increases by \$0.575 when the number of miles driven, m, increases by 1. The R -intercept means that when the number miles driven is 0, the amount reimbursed is \$42. ⓓ

ⓐ \$400 ⓑ \$940 ⓒ The slope, 0.15 , 0.15 , means that Cherie’s salary, S , increases by \$0.15 for every \$1 increase in her sales. The S -intercept means that when her sales are \$0, her salary is \$400. ⓓ

ⓐ \$1570 ⓑ \$5690 ⓒ The slope gives the cost per guest. The slope, 28, means that the cost, C , increases by \$28 when the number of guests increases by 1. The C -intercept means that if the number of guests was 0, the cost would be \$450. ⓓ

perpendicular

## Section 3.3 Exercises

y = 3 x + 5 y = 3 x + 5

y = −3 x − 1 y = −3 x − 1

y = 1 5 x − 5 y = 1 5 x − 5

y = 3 x − 5 y = 3 x − 5

y = 1 2 x − 3 y = 1 2 x − 3

y = − 4 3 x + 3 y = − 4 3 x + 3

y = −2 y = −2

y = 5 8 x − 2 y = 5 8 x − 2

y = − 3 5 x + 1 y = − 3 5 x + 1

y = − 3 2 x + 9 y = − 3 2 x + 9

y = −7 x − 10 y = −7 x − 10

y = 5 y = 5

y = −7 y = −7

y = − x + 8 y = − x + 8

y = 1 4 x − 13 4 y = 1 4 x − 13 4

y = 2 x + 5 y = 2 x + 5

y = − 7 2 x + 4 y = − 7 2 x + 4

x = 7 x = 7

y = −4 y = −4

y = 4 x − 2 y = 4 x − 2

y = 2 x − 6 y = 2 x − 6

x = −3 x = −3

y = − 4 3 x y = − 4 3 x

y = − 3 2 x + 5 y = − 3 2 x + 5

y = 5 2 x y = 5 2 x

x = −2 x = −2

y = − 1 2 x + 5 y = − 1 2 x + 5

y = 1 6 x y = 1 6 x

y = − 4 3 x − 3 y = − 4 3 x − 3

y = − 3 4 x + 1 y = − 3 4 x + 1

y = − 1 5 x − 23 5 y = − 1 5 x − 23 5

y = −2 x − 2 y = −2 x − 2

## Section 3.4 Exercises

ⓐ yes ⓑ yes ⓒ no ⓓ no ⓔ no

ⓐ no ⓑ no ⓒ yes ⓓ yes ⓔ no

ⓐ yes ⓑ no ⓒ no ⓓ no ⓔ no

y ≤ 3 x − 4 y ≤ 3 x − 4

y ≤ − 1 2 x + 1 y ≤ − 1 2 x + 1

x + y ≥ 5 x + y ≥ 5

3 x − y ≤ 6 3 x − y ≤ 6

ⓐ 11 x + 16.5 y ≥ 330 11 x + 16.5 y ≥ 330 ⓑ

ⓐ 15 x + 10 y ≥ 500 15 x + 10 y ≥ 500 ⓑ

## Section 3.5 Exercises

ⓐ {1, 2, 3, 4, 5} ⓑ {4, 8, 12, 16, 20}

ⓐ {1, 5, 7, −2} ⓑ {7, 3, 9, −3, 8}

ⓐ (Rebecca, January 18), (Jennifer, April 1), (John, January 18), (Hector, June 23), (Luis, February 15), (Ebony, April 7), (Raphael, November 6), (Meredith, August 19), (Karen, August 19), (Joseph, July 30) ⓑ {Rebecca, Jennifer, John, Hector, Luis, Ebony, Raphael, Meredith, Karen, Joseph} ⓒ {January 18, April 1, June 23, February 15, April 7, November 6, August 19, July 30}

ⓐ (+100, 17. 2), (110, 18.9), (120, 20.6), (130, 22.3), (140, 24.0), (150, 25.7), (160, 27.5) ⓑ {+100, 110, 120, 130, 140, 150, 160,} ⓒ {17.2, 18.9, 20.6, 22.3, 24.0, 25.7, 27.5}

ⓐ (2, 3), (4, −3), (−2, −1), (−3, 4), (4, −1), (0, −3) ⓑ {−3, −2, 0, 2, 4} ⓒ {−3, −1, 3, 4}

ⓐ (1, 4), (1, −4), (−1, 4), (−1, −4), (0, 3), (0, −3) ⓑ {−1, 0, 1} ⓒ {−4, −3, 3,4}

ⓐ yes ⓑ {−3, −2, −1, 0, 1, 2, 3} ⓒ {9, 4, 1, 0}

ⓐ yes ⓑ {−3, −2, −1, 0, 1, 2, 3} ⓒ 0, 1, 8, 27}

ⓐ yes ⓑ {−3, −2, −1, 0, 1, 2, 3} ⓒ {0, 1, 2, 3}

ⓐ no ⓑ {Jenny, R and y, Dennis, Emily, Raul} ⓒ {RHern and [email protected], [email protected], [email protected], ESmi[email protected], [email protected], [email protected], R and [email protected]}

ⓐ yes ⓑ yes ⓒ no

ⓐ f ( 2 ) = 7 f ( 2 ) = 7 ⓑ f ( −1 ) = −8 f ( −1 ) = −8 ⓒ f ( a ) = 5 a − 3 f ( a ) = 5 a − 3

ⓐ f ( 2 ) = −6 f ( 2 ) = −6 ⓑ f ( −1 ) = 6 f ( −1 ) = 6 ⓒ f ( a ) = −4 a + 2 f ( a ) = −4 a + 2

ⓐ f ( 2 ) = 5 f ( 2 ) = 5 ⓑ f ( −1 ) = 5 f ( −1 ) = 5 ⓒ f ( a ) = a 2 − a + 3 f ( a ) = a 2 − a + 3

ⓐ f ( 2 ) = 9 f ( 2 ) = 9 ⓑ f ( −1 ) = 6 f ( −1 ) = 6 ⓒ f ( a ) = 2 a 2 − a + 3 f ( a ) = 2 a 2 − a + 3

ⓐ g ( h 2 ) = 2 h 2 + 1 g ( h 2 ) = 2 h 2 + 1 ⓑ g ( x + 2 ) = 2 x + 5 g ( x + 2 ) = 2 x + 5 ⓒ g ( x ) + g ( 2 ) = 2 x + 6 g ( x ) + g ( 2 ) = 2 x + 6

ⓐ g ( h 2 ) = −3 h 2 − 2 g ( h 2 ) = −3 h 2 − 2 ⓑ g ( x + 2 ) = −3 x − 8 g ( x + 2 ) = −3 x − 8 ⓒ g ( x ) + g ( 2 ) = −3 x − 10 g ( x ) + g ( 2 ) = −3 x − 10

ⓐ g ( h 2 ) = 3 − h 2 g ( h 2 ) = 3 − h 2 ⓑ g ( x + 2 ) = 1 − x g ( x + 2 ) = 1 − x ⓒ g ( x ) + g ( 2 ) = 4 − x g ( x ) + g ( 2 ) = 4 − x

ⓐ t IND; N DEP ⓑ N ( 4 ) = 165 N ( 4 ) = 165 the number of unwatched shows in Sylvia’s DVR at the fourth week.

ⓐ x IND; C DEP ⓑ N ( 0 ) = 1500 N ( 0 ) = 1500 the daily cost if no books are printed ⓒ N ( 1000 ) = 4750 N ( 1000 ) = 4750 the daily cost of printing 1000 books

## Section 3.6 Exercises

ⓑ D:(-∞,∞), R:(-∞,∞)

ⓑ D:(-∞,∞), R:{5}

ⓑ D:(-∞,∞), R: { −3 } { −3 }

ⓑ D:(-∞,∞), R:[0,∞)

ⓑ (-∞,∞), R:(-∞,0]

ⓑ (-∞,∞), R:[-∞,0)

ⓑ (-∞,∞), R:[ −1 , −1 , ∞)

ⓑ D:[0,∞), R:[0,∞)

ⓑ D:[1,∞), R:[0,∞)

ⓑ D:[ −1 , −1 , ∞), R:[−∞,∞)

ⓑ D:(-∞,∞), R:[1,∞)

D: [2,∞), R: [0,∞)

D: (-∞,∞), R: [4,∞)

D: [ −2 , 2 ] , [ −2 , 2 ] , R: [0, 2]

ⓐ f ( 0 ) = 0 f ( 0 ) = 0 ⓑ ( pi / 2 ) = −1 ( pi / 2 ) = −1 ⓒ f ( −3 pi / 2 ) = −1 f ( −3 pi / 2 ) = −1 ⓓ f ( x ) = 0 f ( x ) = 0 for x = −2 pi , − pi , 0 , pi , 2 pi x = −2 pi , − pi , 0 , pi , 2 pi ⓔ ( −2 pi , 0 ) , ( − pi , 0 ) , ( −2 pi , 0 ) , ( − pi , 0 ) , ( 0 , 0 ) , ( pi , 0 ) , ( 2 pi , 0 ) ( 0 , 0 ) , ( pi , 0 ) , ( 2 pi , 0 ) ( f ) ( 0 , 0 ) ( f ) ( 0 , 0 ) ⓖ [ −2 pi , 2 pi ] [ −2 pi , 2 pi ] ⓗ [ −1 , 1 ] [ −1 , 1 ]

ⓐ f ( 0 ) = −6 f ( 0 ) = −6 ⓑ f ( −3 ) = 3 f ( −3 ) = 3 ⓒ f ( 3 ) = 3 f ( 3 ) = 3 ⓓ f ( x ) = 0 f ( x ) = 0 for no x ⓔ none ⓕ y = 6 y = 6 ⓖ [ −3 , 3 ] [ −3 , 3 ] ⓗ [ −3 , 6 ] [ −3 , 6 ]

( 0 , 3 ) ( 3 , 0 ) ( 0 , 3 ) ( 3 , 0 )

( 6 , 0 ) , ( 0 , 3 ) ( 6 , 0 ) , ( 0 , 3 )

( 16 , 0 ) , ( 0 , −12 ) ( 16 , 0 ) , ( 0 , −12 )

− 1 2 − 1 2

m = 5 3 ; ( 0 , −6 ) m = 5 3 ; ( 0 , −6 )

m = 4 5 ; ( 0 , − 8 5 ) m = 4 5 ; ( 0 , − 8 5 )

horizontal line

plotting points

ⓐ − \$ 250 − \$ 250 ⓑ \$450 ⓒ The slope, 35, means that Marjorie’s weekly profit, P , increases by \$35 for each additional student lesson she teaches. The P -intercept means that when the number of lessons is 0, Marjorie loses \$250. ⓓ

not parallel

y = −5 x − 3 y = −5 x − 3

y = −2 x y = −2 x

y = −3 x + 5 y = −3 x + 5

y = 3 5 x y = 3 5 x

y = −2 x − 5 y = −2 x − 5

y = 1 2 x − 5 2 y = 1 2 x − 5 2

y = 2 y = 2

y = − 2 5 x + 8 y = − 2 5 x + 8

y = 3 y = 3

y = − 3 2 x − 6 y = − 3 2 x − 6

y = 1 y = 1

ⓐ yes ⓑ no ⓒ yes ⓓ yes; ⓔ no

y > 2 3 x − 3 y > 2 3 x − 3

x − 2 y ≥ 6 x − 2 y ≥ 6

ⓐ 20 x + 15 y ≥ 600 20 x + 15 y ≥ 600 ⓑ

ⓐ D: {−3, −2, −1, 0} ⓑ R: {7, 3, 9, −3, 8}

ⓐ (4, 3), (−2, −3), (−2, −1), (−3, 1), (0, −1), (0, 4), ⓑ D: {−3, −2, 0, 4} ⓒ R: {−3, −1, 1, 3, 4}

ⓐ yes ⓑ {−3, −2, −1, 0, 1, 2, 3} ⓒ {0, 1, 8, 27}

ⓐ {−3, −2, −1, 0, 1, 2, 3} ⓑ {−3, −2, −1, 0, 1, 2, 3} ⓒ {−243, −32, −1, 0, 1, 32, 243}

ⓐ f ( −2 ) = −10 f ( −2 ) = −10 ⓑ f ( 3 ) = 5 f ( 3 ) = 5 ⓒ f ( a ) = 3 a − 4 f ( a ) = 3 a − 4

ⓐ f ( −2 ) = 20 f ( −2 ) = 20 ⓑ f ( 3 ) = 0 f ( 3 ) = 0 ⓒ f ( a ) = a 2 − 5 a + 6 f ( a ) = a 2 − 5 a + 6

ⓑ D: (-∞,∞), R: (-∞,∞)

ⓑ D: (-∞,∞), R: (-∞,0]

ⓑ D: [ −2 , −2 , ∞), R: [0,∞)

ⓑ D: (-∞,∞), R: [1,∞)

D: (-∞,∞), R: [2,∞)

ⓐ f ( x ) = 0 f ( x ) = 0 ⓑ f ( π / 2 ) = 1 f ( π / 2 ) = 1 ⓒ f ( −3 π / 2 ) = 1 f ( −3 π / 2 ) = 1 ⓓ f ( x ) = 0 f ( x ) = 0 for x = −2 π , − π , 0 , π , 2 π x = −2 π , − π , 0 , π , 2 π ⓔ ( −2 π , 0 ) , ( −2 π , 0 ) , ( − π , 0 ) , ( − π , 0 ) , ( 0 , 0 ) , ( 0 , 0 ) , ( π , 0 ) , ( π , 0 ) , ( 2 π , 0 ) ( 2 π , 0 ) ( f ) ( 0 , 0 ) ( f ) ( 0 , 0 ) ⓖ [ −2 π , 2 π ] [ −2 π , 2 π ] ⓗ [ −1 , 1 ] [ −1 , 1 ]

ⓐ − 3 5 − 3 5 ⓑ undefined

y = − 4 5 x − 5 y = − 4 5 x − 5

ⓐ yes ⓑ { −3 , −2 , −1 , 0 , 1 , 2 , 3 } { −3 , −2 , −1 , 0 , 1 , 2 , 3 } ⓒ {0, 1, 8, 27}

ⓐ x = −2 , 2 x = −2 , 2 ⓑ y = −4 y = −4 ⓒ f ( −1 ) = −3 f ( −1 ) = −3 ⓓ f ( 1 ) = −3 f ( 1 ) = −3 ⓔ D: (-∞,∞) ⓕ R: [ −4 , −4 , ∞)

As an Amazon Associate we earn from qualifying purchases.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

• Authors: Lynn Marecek
• Publisher/website: OpenStax
• Book title: Intermediate Algebra
• Publication date: Mar 14, 2017
• Location: Houston, Texas
• Book URL: https://openstax.org/books/intermediate-algebra/pages/1-introduction
• Section URL: https://openstax.org/books/intermediate-algebra/pages/chapter-3

© Feb 9, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

#### IMAGES

1. Math Problem Solving Strategies

2. Problem Solving

3. 😎 Multiplication and division problem solving. Problem Solving by Using

4. Lesson 4 Problem-Solving Practice Slope-Intercept Form Worksheet

5. Problem Solving

6. PPT

#### VIDEO

1. LEC 33

2. Advanced Accounts Super Revision Marathon (Part-2)

3. A Nice Algebra Problem

4. Polynomials

5. Surface Areas and Volumes

6. Number Systems

1. Screen Recorders: Best Practices to Follow

If you’ve ever been frustrated with a problem on your computer, you know that videotaping the screen can be invaluable in solving the problem. Screen recording can be a great way to see how a process or task progresses over time.

2. What Are the Six Steps of Problem Solving?

The six steps of problem solving involve problem definition, problem analysis, developing possible solutions, selecting a solution, implementing the solution and evaluating the outcome. Problem solving models are used to address issues that...

3. How to Solve Common Maytag Washer Problems

Maytag washers are reliable and durable machines, but like any appliance, they can experience problems from time to time. Fortunately, many of the most common issues can be solved quickly and easily. Here’s a look at how to troubleshoot som...

4. Chapter 3 Problem Solving

LEARNING OBJECTIVES At the end of this chapter the student should be able to: 1.To learn to solve problems using Polya's Four-Step Problem Solving Strategy.

5. Chapter 3

3. 31. = 11. 31✓. (3) 168 - 78 = 78 + 45h − 78. 90 = 45h. 90 45h. = 45 45. 2 h. It took 2 hours to repair the car. 3.1 Practice and Problem Solving (pp. 123–

6. Chapter 3

3 4 1 2 1 3 2 4 2 3 1. Mathematics in the Modern World. 3.2: Problem Solving Strategies. Mathematics is all about learning and practicing problem-solving

7. 3.7: Chapter 3 Review Exercises

Did the problem-solving strategy help you solve word problems in this chapter? ... Practice Test. Exercise 3.7.87. Four-fifths of the people on a

8. Algebra 2 Common Core Chapter 3

Algebra 2 Common Core answers to Chapter 3 - Linear Systems - 3-2 Solving Systems Algebraically - Practice and Problem-Solving Exercises - Page 146 23

9. Chapter 3: Solving Linear Equations

Solve uniform motion problems. Follow-Up: Use a spreadsheet to find a weighted average. Study Guide and Practice Test (pp. 179–185).

10. Chapter-3.-Problem-Solving-and-Reasoning.pdf

View Chapter-3.-Problem-Solving-and-Reasoning.pdf from MATH MISC at Mapúa Institute of Technology. Chapter III Problem Solving and Reasoning This module

11. Chapter 3: Solving Linear Equations

Chapter 3 Practice Test 185. Vocabulary and Concepts. Skills and Applications.

12. Chapter 3 Practice Problems

Chapter 3: Functions · 3.1 Relations and Functions · 3.2 Properties of a Function's Graph · 3.3 Graphs of Basic Functions; Piecewise Functions · 3.4 Transformations