Examples

Hypothesis If Then

Ai generator.

hypothesis examples if then

In the vast universe of scientific inquiries, the “if-then” hypothesis structure stands out as an essential tool, bridging observation and prediction. This format not only simplifies complex scientific theories but also provides clarity to young learners and budding scientists. Whether you’re experimenting in a professional lab or just in your backyard, understanding and crafting a Thesis statement succinct “if-then” hypothesis can be the key to unlocking the secrets of the world around us. Dive in to explore, write, and refine!

What is If Then Hypothesis?

The “If-Then” hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It’s structured such that the “If” portion introduces a condition or a cause, and the “Then” portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the independent and dependent variables in an experiment.

What is an example of a Hypothesis If Then Statement?

For instance, let’s consider a basic experiment related to plant growth:

  • Hypothesis : If a plant is exposed to direct sunlight for at least 6 hours a day, then it will grow taller than a plant that is kept in the shade.

In this example, the exposure to sunlight (or the lack thereof) is the condition, while the growth of the plant is the predicted outcome. The statement concisely links the cause (sunlight exposure) to the effect (plant growth).

100 If Then Hypothesis Statement Examples

Hypothesis If Then Statement Examples

Size: 215 KB

The “If-Then” hypothesis elegantly captures a cause-and-effect relationship in scientific inquiries. This predictive format, with its concise clarity, bridges observation and anticipated outcome, guiding experiments in a myriad of domains.

  • Plant Growth : If a plant receives fertilizer, then it will grow faster than one without fertilizer.
  • Melting Points : If ice is exposed to temperatures above 0°C, then it will melt.
  • Battery Life : If a battery is used continuously, then it will drain faster than if used intermittently.
  • Sleep & Performance : If a person sleeps less than 6 hours a night, then their cognitive performance will decrease.
  • Diet & Weight : If an individual consumes more calories than they burn, then they will gain weight.
  • Hydration : If a person drinks less than 8 glasses of water daily, then they may experience dehydration.
  • Light & Vision : If a room is darkened, then the pupils of one’s eyes will dilate.
  • Sugar & Energy : If children consume sugary drinks, then they will show increased levels of energy.
  • Study Habits : If a student revises regularly, then they will retain more information than those who cram.
  • Exercise & Health : If a person exercises three times a week, then their cardiovascular health will improve.
  • Noise & Concentration : If a room is noisy, then people inside will find it harder to concentrate.
  • Medication & Pain : If an individual takes painkillers, then they will report reduced pain levels.
  • Soil Quality : If soil is rich in nutrients, then plants grown in it will be healthier.
  • Reading & Vocabulary : If a child reads daily, then their vocabulary will expand faster than a non-reading peer.
  • Social Media : If a teenager spends over 5 hours on social media, then they may experience decreased sleep quality.
  • Sunscreen : If sunscreen is applied, then the chances of getting sunburned decrease.
  • Coffee & Alertness : If an individual drinks coffee in the morning, then they will feel more alert.
  • Music & Productivity : If calming music is played in the workplace, then employees will be more productive.
  • Temperature & Metabolism : If the ambient temperature is cold, then a person’s metabolism will increase.
  • Pets & Stress : If an individual owns a pet, then their stress levels might decrease.
  • Vegetation & Air Quality : If trees are planted in an urban area, then air quality will improve.
  • Vaccination : If a child is vaccinated, then they will have a reduced risk of contracting certain diseases.
  • E-learning : If students use e-learning platforms, then they will have flexible study hours.
  • Recycling : If a community adopts recycling, then landfill waste will decrease.
  • Fast Food : If an individual eats fast food regularly, then their cholesterol levels might rise.
  • UV Light : If UV light is shone on a glow-in-the-dark material, then it will glow more brightly.
  • Brushing Teeth : If a child brushes their teeth twice daily, then they will have fewer cavities than those who don’t.
  • Bird Migration : If the climate becomes colder, then certain birds will migrate to warmer regions.
  • Space Exploration : If astronauts go without gravity for long periods, then their bone density will decrease.
  • Plastic Pollution : If we reduce single-use plastic consumption, then the amount of plastic in the ocean will decrease.
  • Books & Imagination : If a child reads fantasy novels, then their imaginative skills will be enhanced.
  • AI & Efficiency : If companies use artificial intelligence in operations, then their efficiency will improve.
  • Video Games : If children play violent video games, then they might exhibit aggressive behavior.
  • Healthy Diet : If someone consumes a balanced diet, then their overall health will benefit.
  • Deforestation : If forests are cleared at the current rate, then global temperatures will rise due to reduced carbon sequestration.
  • Renewable Energy : If a country invests in renewable energy, then its carbon footprint will decrease.
  • Exercise & Mood : If an individual engages in regular physical activity, then their mood will generally improve.
  • Microplastics : If microplastics enter the water system, then marine life will be at risk.
  • Language Learning : If a person practices a new language daily, then they will become fluent faster.
  • Organic Farming : If farmers use organic methods, then the pesticide residue in the food will decrease.
  • Remote Work : If employees work remotely, then office costs will reduce.
  • Yoga & Flexibility : If someone practices yoga regularly, then their flexibility will increase.
  • Public Transport : If a city improves its public transportation system, then traffic congestion will decrease.
  • Meditation & Stress : If an individual meditates daily, then their stress levels will be lower.
  • Fish & Omega-3 : If someone includes fish in their diet weekly, then their omega-3 fatty acid intake will be adequate.
  • Smartphones & Sleep : If a person uses their smartphone before bed, then their sleep quality might decrease.
  • Waste Segregation : If households segregate waste, then recycling processes will be more efficient.
  • E-Books : If students use e-books instead of paper ones, then paper consumption will decrease.
  • Carpooling : If more people adopt carpooling, then urban air quality will improve due to fewer car emissions.
  • Digital Payments : If digital payment systems are adopted widely, then cash handling costs will reduce.
  • Online Learning : If students engage in online learning platforms, then their access to diverse educational resources will increase.
  • Tree Planting : If a community plants more trees in urban areas, then the air quality will improve due to increased oxygen output.
  • Pet Ownership : If an individual adopts a pet, then they may experience reduced feelings of loneliness.
  • Recycling : If recycling is made mandatory in cities, then landfill waste will decrease significantly.
  • Natural Cleaners : If households use natural cleaning agents, then water pollution from residential areas will decrease.
  • Solar Panels : If a house installs solar panels, then its electricity bill will decrease.
  • Music & Productivity : If workers listen to instrumental music while working, then their productivity might increase.
  • Healthy Breakfast : If someone eats a nutritious breakfast daily, then their energy levels throughout the day will be higher.
  • Water Conservation : If individuals reduce their shower time by 5 minutes, then significant water conservation can be achieved annually.
  • Learning Instruments : If a child learns a musical instrument, then their cognitive and motor skills may improve.
  • Reusable Bags : If shoppers use reusable bags, then the demand for plastic bags will reduce.
  • Public Libraries : If a city invests in public libraries, then the literacy rate of its citizens may rise.
  • Organ Donation : If awareness about organ donation increases, then the waiting list for organ transplants will decrease.
  • Green Spaces : If urban areas increase green spaces, then residents’ mental well-being may improve.
  • Sleep & Memory : If a student gets at least 8 hours of sleep, then their memory retention might be better.
  • Digital Detox : If someone takes a weekly digital detox day, then their stress levels may decrease.
  • Composting : If households start composting kitchen waste, then the amount of organic waste in landfills will reduce.
  • Gardening & Health : If individuals engage in gardening activities, then they might experience improved mental health.
  • Flu Vaccination : If a person gets a flu shot annually, then their chances of getting influenza will reduce.
  • Hand Washing : If people wash their hands regularly, then the spread of common diseases may decrease.
  • Diverse Diet : If someone consumes a diverse range of vegetables, then they will have a better nutrient intake.
  • Physical Books : If a student reads from physical books instead of screens, then they might have better sleep patterns.
  • Mindfulness & Anxiety : If an individual practices mindfulness exercises, then their anxiety levels may decrease.
  • Green Vehicles : If a city promotes the use of electric vehicles, then air pollution levels will reduce.
  • Walking & Health : If someone walks 10,000 steps daily, then their cardiovascular health might improve.
  • Art & Creativity : If children are exposed to art classes from a young age, then their creative thinking skills may enhance.
  • Dark Chocolate : If someone consumes dark chocolate regularly, then their antioxidant intake may increase.
  • Yoga & Flexibility : If an individual practices yoga thrice a week, then their flexibility and posture may improve.
  • Cooking at Home : If families cook meals at home more frequently, then their intake of processed foods might decrease.
  • Local Tourism : If local tourism is promoted, then a region’s economy can benefit due to increased business opportunities.
  • Reading Aloud : If parents read aloud to their children every night, then the children’s vocabulary and comprehension skills might expand.
  • Public Transportation : If cities improve their public transportation system, then the number of cars on the road might decrease.
  • Indoor Plants : If a person keeps indoor plants in their workspace, then their concentration and productivity may enhance due to better air quality.
  • Bird Watching : If an individual engages in bird watching, then their patience and observation skills might develop.
  • Biking to Work : If employees bike to work, then their cardiovascular health can improve and their carbon footprint might reduce.
  • Aquariums & Stress : If someone spends time watching fish in an aquarium, then their stress levels may decrease.
  • Meditation & Focus : If an individual meditates daily, then their attention span and focus might increase.
  • Learning Languages : If a student learns a new language, then their cognitive flexibility and memory retention may improve.
  • Community Gardens : If neighborhoods establish community gardens, then residents may benefit from fresh produce and community bonding.
  • Journaling : If someone journals their thoughts regularly, then their self-awareness and emotional processing might improve.
  • Volunteering : If an individual volunteers once a month, then their sense of purpose and community connection may strengthen.
  • Eco-friendly Products : If consumers prefer eco-friendly products, then industries might adopt more sustainable manufacturing practices.
  • Limiting Screen Time : If children limit their screen time to an hour a day, then their physical activity levels and sleep patterns may benefit.
  • Outdoor Play : If kids play outdoors regularly, then their motor skills and social interactions might develop better.
  • Therapy & Mental Health : If someone attends therapy sessions, then they may experience improved mental well-being and coping strategies.
  • Natural Light : If workspaces are designed to allow more natural light, then employee morale and productivity might rise.
  • Water Intake : If a person drinks at least 8 glasses of water daily, then their hydration levels and skin health may improve.
  • Classical Music : If students listen to classical music while studying, then their concentration might increase.
  • Home Composting : If households adopt composting, then garden soil quality might improve and organic waste in landfills may reduce.
  • Green Roofs : If buildings adopt green roofs, then urban heat islands might decrease, and biodiversity may benefit.

Hypothesis If Then Statement Examples in Research

The crux of experimental research revolves around predicting an outcome. An ‘If-Then’ hypothesis format succinctly conveys anticipated cause-and-effect relationships, enabling clearer comprehension and assessment.

  • DNA Sequencing : If we utilize CRISPR technology for DNA sequencing, then the accuracy of detecting genetic mutations may increase.
  • Drug Efficiency : If a new drug compound is introduced to malignant cells in vitro, then the proliferation rate of these cells might decrease.
  • Digital Learning : If students are exposed to AI-driven educational tools, then their academic performance might significantly improve.
  • Nano-technology : If nanoparticles are used in drug delivery, then the targeting of specific cells may become more efficient.
  • Quantum Computing : If quantum bits replace traditional bits in computing, then the processing speed might witness a revolutionary acceleration.

Hypothesis If Then Statement Examples about Climate Change

Understanding climate change necessitates predicting outcomes based on varied actions or occurrences. These hypotheses present potential scenarios in the vast realm of climate studies.

  • Deforestation : If deforestation rates continue at the current pace, then global carbon dioxide levels will rise significantly.
  • Solar Energy : If solar energy adoption increases by 50% in the next decade, then global reliance on fossil fuels might decrease considerably.
  • Ocean Temperatures : If the world’s oceans warm by another degree Celsius, then coral bleaching events may become twice as frequent.
  • Carbon Taxation : If a global carbon tax is implemented, then emissions from industries might see a drastic reduction.
  • Melting Ice Caps : If polar ice caps continue to melt at the current rate, then sea levels might rise to submerge several coastal cities by 2100.

Hypothesis If Then Statement Examples in Psychology

Psychology delves into understanding behaviors and mental processes. Formulating hypotheses in an ‘If-Then’ structure can streamline experimental setups and interpretations.

  • Mindfulness Meditation : If individuals practice daily mindfulness meditation, then symptoms of anxiety and stress may decrease.
  • Social Media : If teenagers spend over five hours daily on social media, then their self-esteem levels might drop.
  • Cognitive Behavioral Therapy : If patients with depression undergo cognitive-behavioral therapy, then their coping mechanisms may strengthen.
  • Sleep and Memory : If adults get less than six hours of sleep nightly, then their memory retention might deteriorate faster.
  • Nature Exposure : If urban residents are exposed to natural settings weekly, then their mental well-being might improve.

Alternative If Then Hypothesis Statement Examples

Sometimes, researchers propose alternate scenarios to challenge or complement existing beliefs. These hypotheses capture such alternative insights.

  • Vitamin Intake : If individuals consume Vitamin C supplements daily, then their immunity might not necessarily strengthen, contradicting popular belief.
  • Digital Detox : If tech professionals take a monthly digital detox day, then their productivity may not diminish, countering the notion that constant connectivity boosts efficiency.
  • Organic Foods : If consumers solely eat organic foods, then their overall health markers might remain unchanged, challenging the health superiority of organic diets.
  • Exercise Routines : If gym-goers switch to calisthenics from weight training, then muscle mass gain might remain consistent, offering an alternative to traditional gym workouts.
  • E-learning : If students transition from classroom learning to e-learning platforms, then their academic performance may not necessarily drop, challenging the indispensability of physical classrooms.

Hypothesis If Then Statement Examples in Biology

In biology, the interaction of living organisms and their environments often leads to distinct outcomes. The ‘If-Then’ hypothesis structure can efficiently predict these outcomes based on varying factors.

  • Cell Division : If a cell is exposed to radiation, then the rate of its division might decrease significantly.
  • Plant Growth : If plants are provided with blue light, then their growth rate might be faster compared to those exposed to red light.
  • Enzyme Activity : If the temperature of a reaction involving enzymes rises by 10°C, then the activity of the enzymes might double.
  • Animal Behavior : If nocturnal animals are exposed to continuous artificial light, then their feeding and reproductive behaviors might be disrupted.
  • Genetic Modification : If crops are genetically modified for drought resistance, then their yield in arid regions might increase substantially.

Hypothesis If Then Statement Examples in Chemistry

The realm of chemistry is filled with reactions and interactions. Predicting outcomes based on specific conditions is crucial, and the ‘If-Then’ hypothesis structure provides clarity in such predictions.

  • Acid-Base Reactions : If a solution has a pH below 7, then it might turn blue litmus paper red, indicating its acidic nature.
  • Temperature and Reaction Rate : If the temperature of a chemical reaction is increased, then the rate of that reaction might speed up.
  • Metal Reactivity : If zinc metal is placed in copper sulfate solution, then it might displace the copper, indicating its higher reactivity.
  • Organic Synthesis : If an alkene is treated with bromine water, then the solution might decolorize, suggesting the presence of a double bond.
  • Electrolysis : If an aqueous solution of sodium chloride undergoes electrolysis, then chlorine gas might be released at the anode.

Hypothesis If Then Statement Examples in Physics

Physics examines the fundamental principles governing our universe. ‘If-Then’ hypotheses help in determining cause-and-effect relationships amidst complex physical phenomena.

  • Gravity : If an object is dropped from a certain height in a vacuum, then it might accelerate at 9.81 m/s^2, irrespective of its mass.
  • Refraction : If light travels from air into water, then it might bend towards the normal due to the change in speed.
  • Magnetism : If a magnetic field is applied to a moving charged particle, then the particle might experience a force perpendicular to its direction of motion.
  • Thermal Expansion : If a metal rod is heated, then it might expand due to the increased kinetic energy of its atoms.
  • Quantum Mechanics : If an electron is observed in a quantum system, then its wave function might collapse, determining its position.

What is an if-then because hypothesis?

An “if-then-because” hypothesis is a structured statement that predicts the outcome of an experiment based on a proposed cause and effect scenario. The structure usually goes as follows: “If [I do this specific action], then [this particular result will occur] because [of this scientific reason].”

For example: “If I water plants with sugar water, then they will grow taller than the ones watered with plain water because sugar provides additional nutrients to the plants.”

This type of simple hypothesis statement not only predicts the outcome but also provides a reasoning for the expected outcome, thereby setting the groundwork for the experimental procedure and its subsequent analysis.

Is a hypothesis typically an if-then statement?

Yes, a hypothesis is often framed as an “if-then” statement, especially in experimental studies. This format succinctly presents a proposed cause and its expected effect. By specifying a relationship between two variables, it offers clarity to the hypothesis and makes the intended testing straightforward. However, while common, not all hypotheses are written in the “if-then” format.

Is an if-then statement a hypothesis or prediction?

An “if-then” statement can be both a hypothesis and a prediction. However, their contexts differ:

  • Hypothesis: It is a tentative explanation for an observation or phenomenon that can be tested experimentally. When written in the “if-then” format, it usually predicts a relationship between variables based on theoretical understanding.Example: “If a plant is given caffeine, then it will grow faster.”
  • Prediction: It is a specific, testable statement about what will happen under particular conditions. It is based on the hypothesis and narrows down the expected outcomes of an experiment.Example: “If a bean plant is watered with a 1% caffeine solution daily, then after one month, it will be 10% taller than plants watered with plain water.”

How do you write an If Then Hypothesis Statement? – A Step by Step Guide

  • Identify the Variables: Determine the independent variable (the factor you’ll change) and the dependent variable (the factor you’ll measure).
  • Frame the Relationship: Using your understanding of the topic, establish a potential relationship between the identified variables.
  • Start with “If”: Begin your hypothesis with “If” followed by your independent variable.
  • Follow with “Then”: After stating your independent variable, include “then” followed by the potential outcome or change in the dependent variable you expect.
  • Review for Clarity: Ensure your hypothesis is clear, concise, and testable. It should state a specific relationship between the variables.

Choose Your Test

Sat / act prep online guides and tips, what is a hypothesis and how do i write one.

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

author image

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 2 July 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Banner

Scientific Method: Step 3: HYPOTHESIS

  • Step 1: QUESTION
  • Step 2: RESEARCH
  • Step 3: HYPOTHESIS
  • Step 4: EXPERIMENT
  • Step 5: DATA
  • Step 6: CONCLUSION

Step 3: State your hypothesis

Now it's time to state your hypothesis . The hypothesis is an educated guess as to what will happen during your experiment. 

The hypothesis is often written using the words "IF" and "THEN." For example, " If I do not study, then I will fail the test." The "if' and "then" statements reflect your independent and dependent variables . 

The hypothesis should relate back to your original question and must be testable .

A word about variables...

Your experiment will include variables to measure and to explain any cause and effect. Below you will find some useful links describing the different types of variables.

  • "What are independent and dependent variables" NCES
  • [VIDEO] Biology: Independent vs. Dependent Variables (Nucleus Medical Media) Video explaining independent and dependent variables, with examples.

Resource Links

  • What is and How to Write a Good Hypothesis in Research? (Elsevier)
  • Hypothesis brochure from Penn State/Berks

  • << Previous: Step 2: RESEARCH
  • Next: Step 4: EXPERIMENT >>
  • Last Updated: Jun 21, 2024 4:43 PM
  • URL: https://harford.libguides.com/scientific_method

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

experiments disproving spontaneous generation

  • When did science begin?
  • Where was science invented?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

scientific hypothesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Center for Biotechnology Information - PubMed Central - On the scope of scientific hypotheses
  • LiveScience - What is a scientific hypothesis?
  • The Royal Society - On the scope of scientific hypotheses

experiments disproving spontaneous generation

scientific hypothesis , an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an “If…then” statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation. The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper .

The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience. Therefore, although scientific hypotheses commonly are described as educated guesses, they actually are more informed than a guess. In addition, scientists generally strive to develop simple hypotheses, since these are easier to test relative to hypotheses that involve many different variables and potential outcomes. Such complex hypotheses may be developed as scientific models ( see scientific modeling ).

Depending on the results of scientific evaluation, a hypothesis typically is either rejected as false or accepted as true. However, because a hypothesis inherently is falsifiable, even hypotheses supported by scientific evidence and accepted as true are susceptible to rejection later, when new evidence has become available. In some instances, rather than rejecting a hypothesis because it has been falsified by new evidence, scientists simply adapt the existing idea to accommodate the new information. In this sense a hypothesis is never incorrect but only incomplete.

The investigation of scientific hypotheses is an important component in the development of scientific theory . Hence, hypotheses differ fundamentally from theories; whereas the former is a specific tentative explanation and serves as the main tool by which scientists gather data, the latter is a broad general explanation that incorporates data from many different scientific investigations undertaken to explore hypotheses.

Countless hypotheses have been developed and tested throughout the history of science . Several examples include the idea that living organisms develop from nonliving matter, which formed the basis of spontaneous generation , a hypothesis that ultimately was disproved (first in 1668, with the experiments of Italian physician Francesco Redi , and later in 1859, with the experiments of French chemist and microbiologist Louis Pasteur ); the concept proposed in the late 19th century that microorganisms cause certain diseases (now known as germ theory ); and the notion that oceanic crust forms along submarine mountain zones and spreads laterally away from them ( seafloor spreading hypothesis ).

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

hypothesis examples if then

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

hypothesis examples if then

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

hypothesis examples if then

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

hypothesis examples if then

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

case study in research

What is a Case Study in Research? Definition, Methods, and Examples

hypothesis examples if then

Take Top AI Tools for Researchers for a Spin with the Editage All Access 7-Day Pass!

I Help to Study

Useful information for students

Home » Writing » Writing a hypothesis using if and then

  • Academic Writing
  • Assignments
  • Business Plans
  • Buy Services
  • Custom Writing
  • Dissertations
  • For Professionals
  • Help & Assistance
  • Useful Services
  • Various Papers

Expert writing

Writing a hypothesis using if and then

Writing a hypothesis using if and then notice that no one has

Anne Helmenstine, Ph.D. is an author and consultant with a broad scientific and medical background. Read more

Updated August 19, 2015.

Question: What Are Examples of a Hypothesis?

Answer: Although you could state a scientific hypothesis in various ways, most hypothesis are either "If, then" statements or else forms of the null hypothesis. The null hypothesis sometimes is called the "no difference" hypothesis. The null hypothesis is good for experimentation because it’;s simple to disprove.

Continue Reading Below

If you disprove a null hypothesis. that is evidence for a relationship between the variables you are examining. For example:

Examples of the Null Hypothesis

  • Hyperactivity is unrelated to eating sugar.
  • All daisies have the same number of petals.
  • The number of pets in a household is unrelated to the number of people living in it.
  • A person’;s preference for a shirt is unrelated to its color.

Examples of an If, Then Hypothesis

  • If you get at least 6 hours of sleep, you will do better on tests than if you get less sleep.
  • If you drop a ball, it will fall toward the ground.
  • If you drink coffee before going to bed, then it will take longer to fall asleep.
  • If you cover a wound with a bandage, then it will heal with less scarring.

Improving a Hypothesis To Make It Testable

While there are many ways to state a hypothesis, you may wish to revise your first hypothesis in order to make it easier to design an experiment to test it. For example, let’;s say you have a bad breakout the morning after eating a lot of greasy food. You may wonder if there is a correlation between eating greasy food and getting pimples.

You propose a hypothesis:

Writing a hypothesis using if and then Maybe it was the potato

Eating greasy food causes pimples.

Next you need to design an experiment to test this hypothesis. Let’;s say you decide to eat greasy food every day for a week and record the effect on your face. Then, as a control, for the next week you’;ll avoid greasy food and see what happens. Now, this is not a very good experiment because it does not take into account other factors, such as hormone levels, stress, sun exposure, exercise or any number of other variables which might conceivably affect your skin. The problem is that you cannot assign cause to your effect. If you eat french fries for a week and suffer a breakout, can you definitely say it was the grease in the food that caused it? Maybe it was the salt. Maybe it was the potato. Maybe it was unrelated to diet.You can’;t prove your hypothesis. It’;s much easier to disprove a hypothesis. So, let’;s restate the hypothesis to make it easy to evaluate the data.

Getting pimples is unaffected by eating greasy food.

So, if you eat fatty food every day for a week and suffer breakouts and then don’;t breakout the week that you avoid greasy food, you can be pretty sure something is up. Can you disprove the hypothesis? Probably not, since it is so hard to assign cause and effect. However, you can make a strong case that there is some relationship between diet and acne.

Writing a hypothesis using if and then For example, you would not

A hypothesis is a description of a pattern in nature or an explanation about some real-world phenomenon that can be tested through observation and experimentation. The most common way a hypothesis is used in scientific research is as a tentative, testable, and falsifiable statement that explains some observed phenomenon in nature.ok ok [1] We more specifically call this kind of statement an explanatory hypothesis . However, a hypothesis can also be a statement that describes an observed pattern in nature. In this case we call the statement a generalizing hypothesis . [2] [3] Hypotheses can generate predictions . statements that propose that one variable will drive some effect on or change in another variable in the result of a controlled experiment. However, many science resources promote the myth that a hypothesis is simply an educated guess and no different from a prediction. [4] More on this misunderstanding below.

Many academic fields, from the physical sciences to the life sciences to the social sciences, use hypothesis testing as a means of testing ideas to learn about the world and advance scientific knowledge. Whether you are a beginning scholar or a beginning student taking a class in a science subject, understanding what hypotheses are and being able to generate hypotheses and predictions yourself is very important. These instructions will help get you started.

Part One of Two: Preparing to Write a Hypothesis Edit

Select a topic. Pick a topic that interests you, and that you think it would be good to know more about.

  • If you are writing a hypothesis for a school assignment, this step may be taken care of for you.

Can you please put wikiHow on the whitelist for your ad blocker? wikiHow relies on ad money to give you our free how-to guides. Learn how .

Read existing research. Gather all the information you can about the topic you’ve selected. You’ll need to become an expert on the subject and develop a good grasp of what is already known about the topic.

  • Focus on academic and scholarly writing. You need to be certain that your information is unbiased, accurate, and comprehensive.
  • You can find information in textbooks, at a library, and online. If you are in school, you can also ask for help from teachers, librarians, and your peers.

Analyze the literature. Spend some time reading the materials you’ve collected. As you do so, look for and make note of unanswered questions in the literature. These can provide excellent ideas for areas to investigate.

  • For example, if you are interested in the effects of caffeine on the human body, but notice that nobody seems to have explored whether caffeine affects men differently than it does women, this could be something to formulate a hypothesis about. Or, if you are interested in organic farming, you might notice that no one has tested whether organic fertilizer results in different growth rates for plants than non-organic fertilizer.
  • You can sometimes find holes in the existing literature by looking for statements like “it is unknown” or places where information is clearly missing. You might also find a claim in the literature that seems far-fetched, unlikely, or too good to be true, like that caffeine improves math skills. If the claim is testable, you could provide a great service to scientific knowledge by doing your own investigation. If you confirm the claim, the claim becomes even more credible. If you do not find support for the claim, you are helping with the necessary self-correcting aspect of science.
  • Examining these types of questions provides an excellent way for you to set yourself apart by filling in important gaps in a field of study.

Generate questions. After studying the literature on your topic, generate one or more unanswered questions you’d be interested in exploring further. These are your research questions.

  • Following the examples above, you might ask: “How does caffeine affect women as compared to men?” or “How does organic fertilizer affect plant growth compared to non-organic fertilizer?” The rest of your research will be aimed at answering these questions.

Look for clues as to what the answer might be. Once you have generated your research question or questions, look in the literature to see if the existing findings and/or theories about the topic provide any clues that would allow you to come up with ideas about what the answers to your research questions might be. If so, these clues can form the basis for your hypothesis.

  • Following the examples above, if you discover in the literature that there is a pattern that some other types of stimulants seem to affect women more than men, this could be a clue that the same pattern might be true for caffeine. Similarly, if you observe the pattern that organic fertilizer seems to be associated with smaller plants overall, you might explain this pattern with the hypothesis that plants exposed to organic fertilizer grow more slowly than plants exposed to non-organic fertilizer.

Determine your variables. A generalizing hypothesis describes a pattern you think may exist between two variables: an independent variable and a dependent variable. If your experiments confirm the pattern, you may decide to suggest a reason that the pattern exists or a mechanism that generates the pattern. The reason or mechanism you suggest is an explanatory hypothesis .

  • You can think of the independent variable as the one that is causing some kind of difference or effect to occur. In the examples, the independent variable would be gender, i.e. whether a person is male or female, and fertilizer type, i.e. whether the fertilizer is organic or non-organically-based.
  • The dependent variable is what is affected by (i.e. “depends” on) the independent variable. In the examples above, the dependent variable would be the measured impact of caffeine or fertilizer.
  • Your hypothesis should only suggest one relationship. Most importantly, it should only have one independent variable. If you have more than one, you won’t be able to determine which one is actually the source of any effects you might observe.

Generate a simple hypothesis. Once you’ve spent some time thinking about your research question and variables, write down your initial idea about how the variables might be related as a simple declarative statement.

  • Don’t worry too much at this point about being precise or detailed.
  • In the examples above, one hypothesis would make a statement about whether a person’s gender might impact the way the person is affected by caffeine; for example, at this point, your hypothesis might simply be: “a person’s gender is related to how caffeine affects his or her heart rate.” The other hypothesis would make a general statement about plant growth and fertilizer; for example your simple explanatory hypothesis might be “plants given different types of fertilizer are different sizes because they grow at different rates.”

Decide on direction. Hypotheses can either be directional or non-directional. A non-directional hypothesis simply says that one variable affects the other in some way, but does not say specifically in what way. A directional hypothesis provides more information about the nature (or “direction”) of the relationship, stating specifically how one variable affects the other.

  • Using our example, our non-directional hypotheses would be “there is a relationship between a person’s gender and how much caffeine increases the person’s heart rate,” and “there is a relationship between fertilizer type and the speed at which plants grow.”
  • Directional predictions using the same example hypotheses above would be. “Women will experience a greater increase in heart rate after consuming caffeine than will men,” and “plants fertilized with non-organic fertilizer will grow faster than those fertilized with organic fertilizer.” Indeed, these predictions and the hypotheses that allow for them are very different kinds of statements. More on this distinction below.
  • If the literature provides any basis for making a directional prediction, it is better to do so, because it provides more information. Especially in the physical sciences, non-directional predictions are often seen as inadequate.

Get specific. Once you have an initial idea on paper, it’s time to start refining. Make your hypotheses as specific as you can, so it’s clear exactly what ideas you will be testing and make your predictions specific and measurable so that they provide evidence of a relationship between the variables.

  • Where necessary, specify the population (i.e. the people or things) about which you hope to uncover new knowledge. For example, if you were only interested the effects of caffeine on elderly people, your prediction might read: “Women over the age of 65 will experience a greater increase in heart rate than will men of the same age.” If you were interested only in how fertilizer affects tomato plants, your prediction might read: “Tomato plants treated with non-organic fertilizer will grow faster in the first three months than will tomato plants treated with organic fertilizer.”

Make sure it is testable. Your hypothesis must suggest a relationship between two variables or a reason that two variables are related that can feasibly be observed and measured in the real and observable world .

  • For example, you would not want to make the hypothesis: “red is the prettiest color.” This statement is an opinion and it cannot be tested with an experiment. However, proposing the generalizing hypothesis that red is the most popular color is testable with a simple random survey. If you do indeed confirm that red is the most popular color, your next step may be to ask: Why is red the most popular color? The answer you propose is your explanatory hypothesis .
  • Often, hypotheses are stated in the form of if-then sentences. For example, “if children are given caffeine, then their heart rates will increase.” This statement is not a hypothesis. This kind of statement is a brief description of an experimental method followed by a prediction and is the most common way that hypotheses are misrepresented in science education. An easy way to get to the hypothesis for this method and prediction is to ask yourself why you think heart rates will increase if children are given caffeine. Your explanatory hypothesis in this case may be that caffeine is a stimulant. At this point, some scientists write what is called a research hypothesis . a statement that includes the hypothesis, the experiment, and the prediction all in one statement: If caffeine is a stimulant, and some children are given a drink with caffeine while others are given a drink without caffeine, then the heart rates of those children given a caffeinated drink will increase more than the heart rate of children given a non-caffeinated drink.
  • It may sound strange, but researchers rarely ever prove that a hypothesis is right or wrong. Instead, they look for evidence that the opposite of their hypotheses is probably not true. If the opposite (caffeine is not a stimulant) is probably not true, the hypothesis (caffeine is a stimulant) probably is true.
  • Using the above example, if you were to test the effects of caffeine on the heart rates of children, evidence that your hypothesis is not true, sometimes called the null hypothesis . could occur if the heart rates of both the children given the caffeinated drink and the children given the non-caffeinated drink (called the placebo control) did not change, or lowered or raised with the same magnitude, if there was no difference between the two groups of children. If you wanted to test the effects of different fertilizer types, evidence that your hypothesis was not true would be that the plants grew at the same rate, regardless of fertilizer, or if plants treated with organic fertilizer grew faster. It is important to note here that the null hypothesis actually becomes much more useful when researchers test the significance of their results with statistics. When statistics are used on the results of an experiment, a researcher is testing the idea of the null statistical hypothesis. For example, that there is no relationship between two variables or that there is no difference between two groups. [5]

Test your hypothesis. Make your observations or conduct your experiment. Your evidence may allow you to reject your null hypotheses, thus lending support to your experimental hypothesis. However, your evidence may not allow you to reject your null hypothesis and this is okay. Any result is important, even when your result sends you back to the drawing board. Constantly having to go “back to the drawing board” and refine your ideas is how authentic science really works! [6]

When examining the literature, look for research that is similar to what you want to do, and try to build on the findings of other researchers. But also look for claims that you think are suspicious, and test them yourself.

Be specific in your hypotheses, but not so specific that your hypothesis can’t be applied to anything outside your specific experiment. You definitely want to be clear about the population about which you are interested in drawing conclusions, but nobody (except your roommates) will be interested in reading a paper with the prediction: “my three roommates will each be able to do a different amount of pushups.”

Keep your feelings and opinions out of your research. Hypotheses should never say “I believe. ” “I think. ” “I feel. ” or “My opinion is that. “

Remember that science is not necessarily a linear process and can be approached in various ways. [7]

How to Use Simple Words in Technical Writing

How to Make Distilled Water

How to Understand E=mc2

How to Make a Model of DNA Using Common Materials

How to Make an Electromagnet

How to Become a Scientist

How to Make a Simple Electrical Circuit

How to Measure the Height of a Tree

How to Calculate Buoyancy

How to Make a Hologram

Related Articles:

writing-about-your-school-day-in-french_3.jpg

Latest Posts

Small field dosimetry thesis proposal

  • Privacy Policy

© 2016 | IHelptoStudy.Com

Please Wait!

custom writing

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved July 3, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Translators
  • Graphic Designers

Solve

Please enter the email address you used for your account. Your sign in information will be sent to your email address after it has been verified.

100 Hypothesis Examples Across Various Academic Fields

David Costello

A hypothesis is a statement or proposition that is made for the purpose of testing through empirical research. It represents an educated guess or prediction that can be tested through observation and experimentation. A hypothesis is often formulated using a logical construct of "if-then" statements, allowing researchers to set up experiments to determine its validity. It serves as the foundation of a scientific inquiry, providing a clear focus and direction for the study. In essence, a hypothesis is a provisional answer to a research question , which is then subjected to rigorous testing to determine its accuracy.

In this blog post, we'll explore 100 different hypothesis examples, showing you how these simple statements set the stage for discovery in various academic fields. From the mysteries of chemical reactions to the complexities of human behavior, hypotheses are used to kickstart research in numerous disciplines. Whether you're new to the world of academia or just curious about how ideas are tested, these examples will offer insight into the fundamental role hypotheses play in learning and exploration.

  • If a plant is given more sunlight, then it will grow faster.
  • If an animal's environment is altered, then its behavior will change.
  • If a cell is exposed to a toxin, then its function will be impaired.
  • If a species is introduced to a new ecosystem, then it may become invasive.
  • If an antibiotic is applied to a bacterial culture, then growth will be inhibited.
  • If a gene is mutated, then the corresponding protein may become nonfunctional.
  • If a pond's water temperature rises, then the algae population will increase.
  • If a bird species' habitat is destroyed, then its population will decrease.
  • If a mammal is given a high-fat diet, then its cholesterol levels will rise.
  • If human stem cells are treated with specific factors, then they will differentiate into targeted cell types.
  • If the concentration of a reactant is increased, then the rate of reaction will increase.
  • If a metal is placed in a solution of a salt of a less reactive metal, then a displacement reaction will occur.
  • If a solution's pH is lowered, then the concentration of hydrogen ions will increase.
  • If a gas is cooled at constant pressure, then its volume will decrease according to Charles's law.
  • If an endothermic reaction is heated, then the equilibrium position will shift to favor the products.
  • If an enzyme is added to a reaction, then the reaction rate will increase due to the lower activation energy.
  • If the pressure on a gas is increased at constant temperature, then the volume will decrease according to Boyle's law.
  • If a non-polar molecule is added to water, then it will not dissolve due to water's polarity.
  • If a piece of litmus paper is placed in a basic solution, then the color of the paper will turn blue.
  • If an electric current is passed through a salt solution, then the solution will undergo electrolysis and break down into its components.

Computer science

  • If a new algorithm is applied to a sorting problem, then the computational complexity will decrease.
  • If multi-factor authentication is implemented, then the security of a system will increase.
  • If a machine learning model is trained with more diverse data, then its predictive accuracy will improve.
  • If the bandwidth of a network is increased, then the data transmission rate will be faster.
  • If a user interface is redesigned following usability guidelines, then user satisfaction and efficiency will increase.
  • If a specific optimization technique is applied to a database query, then the retrieval time will be reduced.
  • If a new cooling system is used in a data center, then energy consumption will decrease.
  • If parallel processing is implemented in a computational task, then the processing time will be reduced.
  • If a software development team adopts Agile methodologies, then the project delivery time will be shortened.
  • If a more advanced error correction code is used in data transmission, then the error rate will decrease.
  • If the interest rate is lowered, then consumer spending will increase.
  • If the minimum wage is raised, then unemployment may increase among low-skilled workers.
  • If government spending is increased, then the Gross Domestic Product (GDP) may grow.
  • If taxes on luxury goods are raised, then consumption of those goods may decrease.
  • If a country's currency is devalued, then its exports will become more competitive.
  • If inflation is high, then the central bank may increase interest rates to control it.
  • If consumer confidence is high, then spending in the economy will likely increase.
  • If barriers to entry in a market are reduced, then competition will likely increase.
  • If a firm engages in monopolistic practices, then consumer welfare may decrease.
  • If unemployment benefits are extended, then the unemployment rate may be temporarily affected.
  • If class sizes are reduced, then individual student performance may improve.
  • If teachers receive ongoing professional development, then teaching quality will increase.
  • If schools implement a comprehensive literacy program, then reading levels among students will rise.
  • If parents are actively involved in their children's education, then students' academic achievement may increase.
  • If schools provide more access to extracurricular activities, then student engagement and retention may improve.
  • If educational technology is integrated into the classroom, then learning outcomes may enhance.
  • If a school adopts a zero-tolerance policy on bullying, then the incidence of bullying will decrease.
  • If schools provide nutritious meals, then student concentration and performance may improve.
  • If a curriculum is designed to include diverse cultural perspectives, then student understanding of different cultures will increase.
  • If schools implement individualized learning plans, then students with special needs will achieve better educational outcomes.

Environmental science

  • If deforestation rates continue to rise, then biodiversity in the area will decrease.
  • If carbon dioxide emissions are reduced, then the rate of global warming may decrease.
  • If a water body is polluted with nutrients, then algal blooms may occur, leading to eutrophication.
  • If renewable energy sources are used more extensively, then dependency on fossil fuels will decrease.
  • If urban areas implement green spaces, then the urban heat island effect may be reduced.
  • If protective measures are not implemented, then endangered species may become extinct.
  • If waste recycling practices are increased, then landfill usage and waste pollution may decrease.
  • If air quality regulations are enforced, then respiratory health issues in the population may decrease.
  • If soil erosion control measures are not implemented, then agricultural land fertility may decrease.
  • If ocean temperatures continue to rise, then coral reefs may experience more frequent bleaching events.
  • If a new chemotherapy drug is administered to cancer patients, then tumor size will decrease more effectively.
  • If a specific exercise regimen is followed by osteoarthritis patients, then joint mobility will improve.
  • If a population is exposed to higher levels of air pollution, then respiratory diseases such as asthma will increase.
  • If a novel surgical technique is utilized in cardiac surgery, then patient recovery times will be shortened.
  • If a targeted screening program is implemented for a specific genetic disorder, then early detection and intervention rates will increase.
  • If a community's water supply is fortified with fluoride, then dental cavity rates in children will decrease.
  • If an improved vaccination schedule is followed in a pediatric population, then the incidence of preventable childhood diseases will decline.
  • If nutritional supplements are provided to malnourished individuals, then general health and immune function will improve.
  • If stricter infection control protocols are implemented in hospitals, then the rate of hospital-acquired infections will decrease.
  • If organ transplant recipients are given a new immunosuppressant drug, then organ rejection rates will decrease.
  • If a person is exposed to violent media, then their aggression levels may increase.
  • If a child is given positive reinforcement, then desired behaviors will be more likely to be repeated.
  • If an individual suffers from anxiety, then their performance on tasks under pressure may decrease.
  • If a patient is treated with cognitive-behavioral therapy, then symptoms of depression may reduce.
  • If a person lacks sleep, then their cognitive functions and decision-making abilities will decline.
  • If an individual's self-esteem is increased, then their overall life satisfaction may improve.
  • If a person is exposed to a traumatic event, then they may develop symptoms of PTSD.
  • If social support is provided to an individual, then their ability to cope with stress will improve.
  • If a group works collaboratively, then they may exhibit improved problem-solving abilities.
  • If an individual is given autonomy in their work, then their job satisfaction and motivation will increase.
  • If the velocity of an object is increased, then the kinetic energy will also increase.
  • If the temperature of a gas is increased at constant pressure, then the volume will increase.
  • If the mass of an object is doubled, then the gravitational force it exerts will also double.
  • If the frequency of a wave is increased, then the energy it carries will increase.
  • If a magnet's distance from a metal object is decreased, then the magnetic force will increase.
  • If the angle of incidence equals the angle of reflection, then the law of reflection holds true.
  • If the resistance in an electrical circuit is increased, then the current will decrease.
  • If the force applied to a spring is doubled, then the extension of the spring will also double.
  • If a mirror is concave, then it will focus parallel rays to a point.
  • If a body is in uniform circular motion, then the net force toward the center is providing the centripetal acceleration.
  • If educational opportunities are equally distributed in a society, then social mobility will increase.
  • If community policing strategies are implemented, then trust between law enforcement and the community may improve.
  • If social media usage increases among teenagers, then face-to-face social interaction may decrease.
  • If gender wage gap policies are enforced, then disparities in earnings between men and women will decrease.
  • If a society emphasizes individualistic values, then community engagement and collective responsibility may decline.
  • If affordable housing initiatives are implemented in urban areas, then homelessness rates may decrease.
  • If a minority group is represented in media, then stereotypes and prejudices toward that group may decrease.
  • If a culture promotes work-life balance, then overall life satisfaction among its citizens may increase.
  • If increased funding is provided to community centers in underserved neighborhoods, then social cohesion and community engagement may improve.
  • If legislation is passed to protect the rights of LGBTQ+ individuals, then discrimination and stigma may decrease in society.

In the exploration of various academic disciplines, hypotheses play a crucial role as foundational statements that guide research and inquiry. From understanding complex biological processes to navigating the nuances of human behavior in sociology, hypotheses serve as testable predictions that shape the direction of scientific investigation. The examples provided across the fields of medicine, computer science, sociology, and education illustrate the diverse applications and importance of hypotheses in shaping our understanding of the world. Whether improving medical treatments, enhancing technological systems, fostering social equality, or elevating educational practices, hypotheses remain central to scientific progress and societal advancement. By formulating clear and measurable hypotheses, researchers can continue to unravel complex phenomena, contribute to their fields, and ultimately enrich human knowledge and well-being.

Header image by Qunica .

  • Academic Writing Advice
  • All Blog Posts
  • Writing Advice
  • Admissions Writing Advice
  • Book Writing Advice
  • Short Story Advice
  • Employment Writing Advice
  • Business Writing Advice
  • Web Content Advice
  • Article Writing Advice
  • Magazine Writing Advice
  • Grammar Advice
  • Dialect Advice
  • Editing Advice
  • Freelance Advice
  • Legal Writing Advice
  • Poetry Advice
  • Graphic Design Advice
  • Logo Design Advice
  • Translation Advice
  • Blog Reviews
  • Short Story Award Winners
  • Scholarship Winners

Need an academic editor before submitting your work?

Need an academic editor before submitting your work?

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • Difference Between Independent and Dependent Variables
  • The Difference Between Control Group and Experimental Group
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • Independent Variable Definition and Examples
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis examples if then

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis examples if then

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

5 Characteristics of a Good Hypothesis: A Guide for Researchers

  • by Brian Thomas
  • October 10, 2023

Are you a curious soul, always seeking answers to the whys and hows of the world? As a researcher, formulating a hypothesis is a crucial first step towards unraveling the mysteries of your study. A well-crafted hypothesis not only guides your research but also lays the foundation for drawing valid conclusions. But what exactly makes a hypothesis a good one? In this blog post, we will explore the five key characteristics of a good hypothesis that every researcher should know.

Here, we will delve into the world of hypotheses, covering everything from their types in research to understanding if they can be proven true. Whether you’re a seasoned researcher or just starting out, this blog post will provide valuable insights on how to craft a sound hypothesis for your study. So let’s dive in and uncover the secrets to formulating a hypothesis that stands strong amidst the scientific rigor!

(Keywords: characteristics of a good hypothesis, important characteristics of a good hypothesis quizlet, types of hypothesis in research, can a hypothesis be proven true, 6 parts of hypothesis, how to start a hypothesis sentence, examples of hypothesis, five key elements of a good hypothesis, hypothesis in research papers, is a hypothesis always a question, three things needed for a good hypothesis, components of a good hypothesis, formulate a hypothesis, characteristics of a hypothesis mcq, criteria for a scientific hypothesis, steps of theory development in scientific methods, what makes a good hypothesis, characteristics of a good hypothesis quizlet, five-step p-value approach to hypothesis testing , stages of hypothesis, good hypothesis characteristics, writing a good hypothesis example, difference between hypothesis and hypotheses, good hypothesis statement, not a characteristic of a good hypothesis)

5 Characteristics of a Good Hypothesis

Clear and specific.

A good hypothesis is like a GPS that guides you to the right destination. It needs to be clear and specific so that you know exactly what you’re testing. Avoid vague statements or general ideas. Instead, focus on crafting a hypothesis that clearly states the relationship between variables and the expected outcome. Clarity is key, my friend!

Testable and Falsifiable

A hypothesis might sound great in theory, but if you can’t test it or prove it wrong, then it’s like chasing unicorns. A good hypothesis should be testable and falsifiable – meaning there should be a way to gather evidence to support or refute it. Don’t be afraid to challenge your hypothesis and put it to the test. Only when it can be proven false can it truly be considered a good hypothesis.

Based on Existing Knowledge

Imagine trying to build a Lego tower without any Lego bricks. That’s what it’s like to come up with a hypothesis that has no basis in existing knowledge. A good hypothesis is grounded in previous research, theories, or observations. It shows that you’ve done your homework and understand the current state of knowledge in your field. So, put on your research hat and gather those building blocks for a solid hypothesis!

Specific Predictions

No, we’re not talking about crystal ball predictions or psychic abilities here. A good hypothesis includes specific predictions about what you expect to happen. It’s like making an educated guess based on your understanding of the variables involved. These predictions help guide your research and give you something concrete to look for. So, put on those prediction goggles, my friend, and let’s get specific!

Relevant to the Research Question

A hypothesis is a road sign that points you in the right direction. But if it’s not relevant to your research question, then you might end up in a never-ending detour. A good hypothesis aligns with your research question and addresses the specific problem or phenomenon you’re investigating. Keep your focus on the main topic and avoid getting sidetracked by shiny distractions. Stay relevant, my friend, and you’ll find the answers you seek!

And there you have it: the five characteristics of a good hypothesis. Remember, a good hypothesis is clear, testable, based on existing knowledge, makes specific predictions, and is relevant to your research question. So go forth, my friend, and hypothesize your way to scientific discovery!

FAQs: Characteristics of a Good Hypothesis

In the realm of scientific research, a hypothesis plays a crucial role in formulating and testing ideas. A good hypothesis serves as the foundation for an experiment or study, guiding the researcher towards meaningful results. In this FAQ-style subsection, we’ll explore the characteristics of a good hypothesis, their types, formulation, and more. So let’s dive in and unravel the mysteries of hypothesis-making!

What Are Two Important Characteristics of a Good Hypothesis

A good hypothesis possesses two important characteristics:

Testability : A hypothesis must be testable to determine its validity. It should be formulated in a way that allows researchers to design and conduct experiments or gather data for analysis. For example, if we hypothesize that “drinking herbal tea reduces stress,” we can easily test it by conducting a study with a control group and a group drinking herbal tea.

Falsifiability : Falsifiability refers to the potential for a hypothesis to be proven wrong. A good hypothesis should make specific predictions that can be refuted or supported by evidence. This characteristic ensures that hypotheses are based on empirical observations rather than personal opinions. For instance, the hypothesis “all swans are white” can be falsified by discovering a single black swan.

What Are the Types of Hypothesis in Research

In research, there are three main types of hypotheses:

Null Hypothesis (H0) : The null hypothesis is a statement of no effect or relationship. It assumes that there is no significant difference between variables or no effect of a treatment. Researchers aim to reject the null hypothesis in favor of an alternative hypothesis.

Alternative Hypothesis (HA or H1) : The alternative hypothesis is the opposite of the null hypothesis. It asserts that there is a significant difference between variables or an effect of a treatment. Researchers seek evidence to support the alternative hypothesis.

Directional Hypothesis : A directional hypothesis predicts the specific direction of the relationship or difference between variables. For example, “increasing exercise duration will lead to greater weight loss.”

Can a Hypothesis Be Proven True

In scientific research, hypotheses are not proven true; they are supported or rejected based on empirical evidence . Even if a hypothesis is supported by multiple studies, new evidence could arise that contradicts it. Scientific knowledge is always subject to revision and refinement. Therefore, the goal is to gather enough evidence to either support or reject a hypothesis, rather than proving it absolutely true.

What Are the Six Parts of a Hypothesis

A hypothesis typically consists of six essential parts:

Research Question : A clear and concise question that the hypothesis seeks to answer.

Variables : Identification of the independent (manipulated) and dependent (measured) variables involved in the hypothesis.

Population : The specific group or individuals the hypothesis is concerned with.

Relationship or Comparison : The expected relationship or difference between variables, often indicated by directional terms like “more,” “less,” “higher,” or “lower.”

Predictability : A statement of the predicted outcome or result based on the relationship between variables.

Testability : The ability to design an experiment or gather data to support or reject the hypothesis.

How Do You Start a Hypothesis Sentence

When starting a hypothesis sentence, it is essential to use clear and concise language to express your ideas. A common approach is to use the phrase “If…then…” to establish the conditional relationship between variables. For example:

  • If [independent variable], then [dependent variable] because [explanation of expected relationship].

This structure allows for a straightforward and logical formulation of the hypothesis.

What Are Examples of Hypotheses

Here are a few examples of well-formulated hypotheses:

If exposure to sunlight increases, then plants will grow taller because sunlight is necessary for photosynthesis.

If students receive praise for good grades, then their motivation to excel will increase because they seek recognition and approval.

If the dose of a painkiller is increased, then the relief from pain will last longer because a higher dosage has a prolonged effect.

What Are the Five Key Elements to a Good Hypothesis

A good hypothesis should include the following five key elements:

Clarity : The hypothesis should be clear and specific, leaving no room for interpretation.

Testability : It should be possible to test the hypothesis through experimentation or data collection.

Relevance : The hypothesis should be directly tied to the research question or problem being investigated.

Specificity : It must clearly state the relationship or difference between variables being studied.

Falsifiability : The hypothesis should make predictions that can be refuted or supported by empirical evidence.

What Makes a Good Hypothesis in a Research Paper

In a research paper, a good hypothesis should have the following characteristics:

Relevance : It must directly relate to the research topic and address the objectives of the study.

Clarity : The hypothesis should be concise and precisely worded to avoid confusion.

Unambiguous : It must leave no room for multiple interpretations or ambiguity.

Logic : The hypothesis should be based on rational and logical reasoning, considering existing theories and observations.

Empirical Support : Ideally, the hypothesis should be supported by prior empirical evidence or strong theoretical justifications.

Is a Hypothesis Always a Question

No, a hypothesis is not always in the form of a question. While some hypotheses can take the form of a question, others may be statements asserting a relationship or difference between variables. The form of a hypothesis depends on the research question being addressed and the researcher’s preferred style of expression.

What Are the Three Things Needed for a Good Hypothesis

For a hypothesis to be considered good, it must fulfill the following three criteria:

Testability : The hypothesis should be formulated in a way that allows for empirical testing through experimentation or data collection.

Falsifiability : It must make specific predictions that can be potentially refuted or supported by evidence.

Relevance : The hypothesis should directly address the research question or problem being investigated.

What Are the Four Components to a Good Hypothesis

A good hypothesis typically consists of four components:

Independent Variable : The variable being manipulated or controlled by the researcher.

Dependent Variable : The variable being measured or observed to determine the effect of the independent variable.

Directionality : The predicted relationship or difference between the independent and dependent variables.

Population : The specific group or individuals to which the hypothesis applies.

How Do You Formulate a Hypothesis

To formulate a hypothesis, follow these steps:

Identify the Research Topic : Clearly define the area or phenomenon you want to study.

Conduct Background Research : Review existing literature and research to gain knowledge about the topic.

Formulate a Research Question : Ask a clear and focused question that you want to answer through your hypothesis.

State the Null and Alternative Hypotheses : Develop a null hypothesis to assume no effect or relationship, and an alternative hypothesis to propose a significant effect or relationship.

Decide on Variables and Relationships : Determine the independent and dependent variables and the predicted relationship between them.

Refine and Test : Refine your hypothesis, ensuring it is clear, testable, and falsifiable. Then, design experiments or gather data to support or reject it.

What Is a Characteristic of a Hypothesis MCQ

Multiple-choice questions (MCQ) regarding the characteristics of a hypothesis often assess knowledge on the testability and falsifiability of hypotheses. They may ask about the criteria that distinguish a good hypothesis from a poor one or the importance of making specific predictions. Remember to choose answers that emphasize the empirical and testable nature of hypotheses.

What Five Criteria Must Be Satisfied for a Hypothesis to Be Scientific

For a hypothesis to be considered scientific, it must satisfy the following five criteria:

Testability : The hypothesis must be formulated in a way that allows it to be tested through experimentation or data collection.

Falsifiability : It should make specific predictions that can be potentially refuted or supported by empirical evidence.

Empirical Basis : The hypothesis should be based on empirical observations or existing theories and knowledge.

Relevance : It must directly address the research question or problem being investigated.

Objective : A scientific hypothesis should be free from personal biases or subjective opinions, focusing on objective observations and analysis.

What Are the Steps of Theory Development in Scientific Methods

In scientific methods, theory development typically involves the following steps:

Observation : Identifying a phenomenon or pattern worthy of investigation through observation or empirical data.

Formulation of a Hypothesis : Constructing a hypothesis that explains the observed phenomena or predicts a relationship between variables.

Data Collection : Gathering relevant data through experiments, surveys, observations, or other research methods.

Analysis : Analyzing the collected data to evaluate the hypothesis’s predictions and determine their validity.

Revision and Refinement : Based on the analysis, refining the hypothesis, modifying the theory, or formulating new hypotheses for further investigation.

Which of the Following Makes a Good Hypothesis

A good hypothesis is characterized by:

Testability : The ability to form experiments or gather data to support or refute the hypothesis.

Falsifiability : The potential for the hypothesis’s predictions to be proven wrong based on empirical evidence.

Clarity : A clear and concise statement or question that leaves no room for ambiguity.

Relevancy : Directly addressing the research question or problem at hand.

Remember, it is important to select the option that encompasses all these characteristics.

What Are the Characteristics of a Good Hypothesis

A good hypothesis possesses several characteristics, such as:

Testability : It should allow for empirical testing through experiments or data collection.

Falsifiability : The hypothesis should make specific predictions that can be potentially refuted or supported by evidence.

Clarity : It must be clearly and precisely formulated, leaving no room for ambiguity or multiple interpretations.

Relevance : The hypothesis should directly relate to the research question or problem being investigated.

What Is the Five-Step p-value Approach to Hypothesis Testing

The five-step p-value approach is a commonly used framework for hypothesis testing:

Step 1: Formulating the Hypotheses : The null hypothesis (H0) assumes no effect or relationship, while the alternative hypothesis (HA) proposes a significant effect or relationship.

Step 2: Setting the Significance Level : Decide on the level of significance (α), which represents the probability of rejecting the null hypothesis when it is true. The commonly used level is 0.05 (5%).

Step 3: Collecting Data and Performing the Test : Acquire and analyze the data, calculating the test statistic and the corresponding p-value.

Step 4: Comparing the p-value with the Significance Level : If the p-value is less than the significance level (α), reject the null hypothesis. Otherwise, fail to reject the null hypothesis.

Step 5: Drawing Conclusions : Based on the comparison in Step 4, interpret the results and draw conclusions about the hypothesis.

What Are the Stages of Hypothesis

The stages of hypothesis generally include:

Observation : Identifying a pattern, phenomenon, or research question that warrants investigation.

Formulation : Developing a hypothesis that explains or predicts the relationship or difference between variables.

Testing : Collecting data, designing experiments, or conducting studies to gather evidence supporting or refuting the hypothesis.

Analysis : Assessing the collected data to determine whether the results support or reject the hypothesis.

Conclusion : Drawing conclusions based on the analysis and making further iterations, refinements, or new hypotheses for future research.

What Is a Characteristic of a Good Hypothesis

A characteristic of a good hypothesis is its ability to make specific predictions about the relationship or difference between variables. Good hypotheses avoid vague statements and clearly articulate the expected outcomes. By doing so, researchers can design experiments or gather data that directly test the predictions, leading to meaningful results.

How Do You Write a Good Hypothesis Example

To write a good hypothesis example, follow these guidelines:

If possible, use the “If…then…” format to express a conditional relationship between variables.

Be clear and concise in stating the variables involved, the predicted relationship, and the expected outcome.

Ensure the hypothesis is testable, meaning it can be evaluated through experiments or data collection.

For instance, consider the following example:

If students study for longer periods of time, then their test scores will improve because increased study time allows for better retention of information and increased proficiency.

What Is the Difference Between Hypothesis and Hypotheses

The main difference between a hypothesis and hypotheses lies in their grammatical number. A hypothesis refers to a single statement or proposition that is formulated to explain or predict the relationship between variables. On the other hand, hypotheses is the plural form of the term hypothesis, commonly used when multiple statements or propositions are proposed and tested simultaneously.

What Is a Good Hypothesis Statement

A good hypothesis statement exhibits the following qualities:

Clarity : It is written in clear and concise language, leaving no room for confusion or ambiguity.

Testability : The hypothesis should be formulated in a way that enables testing through experiments or data collection.

Specificity : It must clearly state the predicted relationship or difference between variables.

By adhering to these criteria, a good hypothesis statement guides research efforts effectively.

What Is Not a Characteristic of a Good Hypothesis

A characteristic that does not align with a good hypothesis is subjectivity . A hypothesis should be objective, based on empirical observations or existing theories, and free from personal bias. While personal interpretations and opinions can inspire the formulation of a hypothesis, it must ultimately rely on objective observations and be open to empirical testing.

By now, you’ve gained insights into the characteristics of a good hypothesis, including testability, falsifiability, clarity,

  • characteristics
  • falsifiable
  • good hypothesis
  • hypothesis testing
  • null hypothesis
  • observations
  • scientific rigor

' src=

Brian Thomas

Is july really a 31-day month unraveling the puzzling calendar quirk, how long does it take to become l5 at amazon, you may also like, what happens if you leave the dog be in dying light 2.

  • by Daniel Taylor
  • October 9, 2023

Is the Chevy 6.2 a Big Block?

  • by Mr. Gilbert Preston
  • October 8, 2023

Is TBS on Paramount Plus

  • by Richard Edwards
  • November 2, 2023

How to Get Loads Without a Broker: A Comprehensive Guide for Truckers in 2023

  • by Travis Heath
  • October 7, 2023

Who Killed Grindelwald?

  • by Laura Rodriguez
  • October 18, 2023

Can the Government Track Prepaid Cards?

  • October 27, 2023

IMAGES

  1. PPT

    hypothesis examples if then

  2. hypothesis with if and then

    hypothesis examples if then

  3. Properly writing a hypothesis with if and then

    hypothesis examples if then

  4. PPT

    hypothesis examples if then

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    hypothesis examples if then

  6. If Then Hypothesis Examples

    hypothesis examples if then

VIDEO

  1. Concept of Hypothesis in Hindi || Research Hypothesis || #ugcnetphysicaleducation #ntaugcnet

  2. How To Formulate The Hypothesis/What is Hypothesis?

  3. Hypothesis Meaning in Telugu

  4. Writing a hypothesis

  5. 8 Hypothesis testing| Z-test |Two Independent Samples with MS Excel

  6. Hypothesis testing,its types and examples (M.Faisal medics)

COMMENTS

  1. PDF How to Write a Good Hypothesis Using "If… Then… Because…"

    Examples: If 7th graders and 8th graders complete the same math problems, then the 8th graders will have more answers correct, because they have studied math for one year longer than the 7th graders. If dry bread and moist bread are left in bags for two weeks, then the moist bread will grow mold more quickly than the dry bread, because mold is ...

  2. Hypothesis If Then

    The "If-Then" hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It's structured such that the "If" portion introduces a condition or a cause, and the "Then" portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the ...

  3. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  4. Hypothesis Examples

    Research Hypothesis Examples. A research hypothesis (H 1) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it's easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect.

  5. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  6. What Is a Hypothesis and How Do I Write One?

    This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of "if-then" and the independent and dependent variables are present. #2: Null Hypotheses Your if-then hypothesis is not the only one needed to complete a successful experiment, however.

  7. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  8. Subject Guides: Scientific Method: Step 3: HYPOTHESIS

    The hypothesis is an educated guess as to what will happen during your experiment. The hypothesis is often written using the words "IF" and "THEN." For example, "If I do not study, then I will fail the test." The "if' and "then" statements reflect your independent and dependent variables.

  9. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  10. What Are the Elements of a Good Hypothesis?

    A hypothesis is an educated guess or prediction of what will happen. In science, a hypothesis proposes a relationship between factors called variables. A good hypothesis relates an independent variable and a dependent variable. The effect on the dependent variable depends on or is determined by what happens when you change the independent variable.

  11. What is a Research Hypothesis: How to Write it, Types, and Examples

    Here are some good research hypothesis examples: "The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.". "Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.".

  12. Writing a hypothesis using if and then

    For example: Examples of the Null Hypothesis. Hyperactivity is unrelated to eating sugar. All daisies have the same number of petals. The number of pets in a household is unrelated to the number of people living in it. A person';s preference for a shirt is unrelated to its color. Examples of an If, Then Hypothesis

  13. What Are Examples of a Hypothesis?

    Examples of If, Then Hypotheses. If you get at least 6 hours of sleep, you will do better on tests than if you get less sleep. If you drop a ball, it will fall toward the ground. If you drink coffee before going to bed, then it will take longer to fall asleep.

  14. What Is a Testable Hypothesis?

    Updated on January 12, 2019. A hypothesis is a tentative answer to a scientific question. A testable hypothesis is a hypothesis that can be proved or disproved as a result of testing, data collection, or experience. Only testable hypotheses can be used to conceive and perform an experiment using the scientific method .

  15. Hypothesis Testing

    Present the findings in your results and discussion section. Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps. Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test.

  16. How to Write a Hypothesis w/ Strong Examples

    Then you will have everything you need to formulate your hypothesis. Formulate the Hypothesis; Based on your research question and preliminary research, now you can create your hypothesis. A good hypothesis should be clear, concise, and testable. ... For example, a hypothesis for the research question stated above might be: "If sunflower ...

  17. 100 Hypothesis Examples Across Various Academic Fields

    100 Hypothesis Examples Across Various Academic Fields. A hypothesis is a statement or proposition that is made for the purpose of testing through empirical research. It represents an educated guess or prediction that can be tested through observation and experimentation. A hypothesis is often formulated using a logical construct of "if-then ...

  18. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here.

  19. What Is a Hypothesis? The Scientific Method

    In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one. In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X, then Y ."

  20. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  21. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  22. 5 Characteristics of a Good Hypothesis: A Guide for Researchers

    A hypothesis might sound great in theory, but if you can't test it or prove it wrong, then it's like chasing unicorns. A good hypothesis should be testable and falsifiable - meaning there should be a way to gather evidence to support or refute it. ... To write a good hypothesis example, follow these guidelines: If possible, use the "If ...

  23. 9.2: Null and Alternative Hypotheses

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.